This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354423 #37 Jun 05 2022 06:09:42 %S A354423 1,2,4,10,22,58,233,827,3359,16631,114371,708278,3975838,35724478 %N A354423 a(0)=1; a(n) is the smallest positive integer that cannot be obtained from the integers {1, ..., n} using each number at most once, and the operators addition and multiplication. %C A354423 This is a simpler version of A060315, which uses all four arithmetic operations: addition, subtraction, multiplication, and division. The sequence is the answer to FiveThirtyEight.com's Riddler Express of June 3, 2022 (see links). %H A354423 Zach Wissner-Gross, <a href="https://fivethirtyeight.com/features/can-you-escape-the-desert/">Can You Escape the Desert?</a>, Riddler Express, Jun 03 2022. %F A354423 a(n) <= A060315(n+1). - _Michael S. Branicky_, Jun 04 2022 %e A354423 a(3)=10 because 1=1, 2=2, 3=3, 4=1+3, 5=2+3, 6=2*3, 7=2*3+1, 8=(3+1)*2, 9=(1+2)*3, but there is no way to make 10 using 1, 2, and 3 at most once. %o A354423 (Python) %o A354423 def a(n): %o A354423 R = dict() # R[|s|-1][s] = reachable values using subset s %o A354423 for i in range(n+1): R[i] = dict() %o A354423 for i in range(1, n+1): R[0][(i,)] = {i} %o A354423 reach = set(range(1, n+1)) %o A354423 for j in range(1, n): %o A354423 for i in range((j+1)//2): %o A354423 for s in R[i]: %o A354423 for t in R[j-1-i]: %o A354423 if set(s) & set(t) == set(): %o A354423 u = tuple(sorted(set(s) | set(t))) %o A354423 if u not in R[len(u)-1]: %o A354423 R[len(u)-1][u] = set() %o A354423 for a in R[i][s]: %o A354423 for b in R[j-1-i][t]: %o A354423 R[len(u)-1][u].update([a+b, a*b]) %o A354423 reach.update([a+b, a*b]) %o A354423 k = n+1 %o A354423 while k in reach: k += 1 %o A354423 return k %o A354423 print([a(n) for n in range(10)]) # _Michael S. Branicky_, May 30 2022 %Y A354423 Cf. A060315. %K A354423 nonn,more %O A354423 0,2 %A A354423 _Dean D. Ballard_, May 26 2022 %E A354423 a(10)-a(12) from _Michael S. Branicky_, May 27 2022 %E A354423 a(13) from _Michael S. Branicky_, May 30 2022 %E A354423 a(0) inserted by _Michael S. Branicky_, Jun 04 2022