This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354432 #27 Dec 07 2024 07:24:38 %S A354432 1,1,1,5,1,7,1,11,10,11,1,3,1,15,16,23,1,4,1,7,22,23,1,5,26,27,31,19, %T A354432 1,41,1,47,34,35,36,61,1,39,40,31,1,55,1,29,6,47,1,7,50,29,52,17,1,25, %U A354432 56,3,58,59,1,53,1,63,74,95,66,83,1,22,70,17,1,15,1,75,28 %N A354432 a(n) is the numerator of the sum of the reciprocals of the nonprime divisors of n. %H A354432 Antti Karttunen, <a href="/A354432/b354432.txt">Table of n, a(n) for n = 1..20000</a> %F A354432 a(p) = 1 for prime p. - _Michael S. Branicky_, May 28 2022 %e A354432 1, 1, 1, 5/4, 1, 7/6, 1, 11/8, 10/9, 11/10, 1, 3/2, 1, 15/14, 16/15, 23/16, ... %t A354432 Table[DivisorSum[n, 1/# &, !PrimeQ[#] &], {n, 75}] // Numerator %o A354432 (PARI) a(n) = numerator(sumdiv(n, d, if(!isprime(d), 1/d))) \\ _Michael S. Branicky_, May 28 2022 %o A354432 (Python) %o A354432 from fractions import Fraction %o A354432 from sympy import divisors, isprime %o A354432 def a(n): return sum(Fraction(1, d) for d in divisors(n, generator=True) if not isprime(d)).numerator %o A354432 print([a(n) for n in range(1, 76)]) # _Michael S. Branicky_, May 28 2022 %o A354432 (Python) %o A354432 from math import prod %o A354432 from fractions import Fraction %o A354432 from sympy import factorint %o A354432 def A354432(n): %o A354432 f = factorint(n) %o A354432 return (Fraction(prod(p**(e+1)-1 for p, e in f.items()),prod(p-1 for p in f)*n) - sum(Fraction(1,p) for p in f)).numerator # _Chai Wah Wu_, May 28 2022 %Y A354432 Cf. A017665, A018252, A023890, A028235, A354433 (denominators). %K A354432 nonn,frac %O A354432 1,4 %A A354432 _Ilya Gutkovskiy_, May 28 2022