cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354433 a(n) is the denominator of the sum of the reciprocals of the nonprime divisors of n.

This page as a plain text file.
%I A354433 #20 Dec 06 2024 20:44:11
%S A354433 1,1,1,4,1,6,1,8,9,10,1,2,1,14,15,16,1,3,1,5,21,22,1,3,25,26,27,14,1,
%T A354433 30,1,32,33,34,35,36,1,38,39,20,1,42,1,22,5,46,1,4,49,25,51,13,1,18,
%U A354433 55,2,57,58,1,30,1,62,63,64,65,66,1,17,69,14,1,8,1,74,25
%N A354433 a(n) is the denominator of the sum of the reciprocals of the nonprime divisors of n.
%H A354433 Antti Karttunen, <a href="/A354433/b354433.txt">Table of n, a(n) for n = 1..20000</a>
%F A354433 a(p) = 1 for prime p. - _Michael S. Branicky_, May 28 2022
%e A354433 1, 1, 1, 5/4, 1, 7/6, 1, 11/8, 10/9, 11/10, 1, 3/2, 1, 15/14, 16/15, 23/16, ...
%t A354433 Table[DivisorSum[n, 1/# &, !PrimeQ[#] &], {n, 75}] // Denominator
%o A354433 (PARI) a(n) = denominator(sumdiv(n, d, if(!isprime(d), 1/d))) \\ _Michael S. Branicky_, May 28 2022
%o A354433 (Python)
%o A354433 from fractions import Fraction
%o A354433 from sympy import divisors, isprime
%o A354433 def a(n): return sum(Fraction(1, d) for d in divisors(n, generator=True) if not isprime(d)).denominator
%o A354433 print([a(n) for n in range(1, 76)]) # _Michael S. Branicky_, May 28 2022
%o A354433 (Python)
%o A354433 from math import prod
%o A354433 from fractions import Fraction
%o A354433 from sympy import factorint
%o A354433 def A354433(n):
%o A354433     f = factorint(n)
%o A354433     return (Fraction(prod(p**(e+1)-1 for p, e in f.items()),prod(p-1 for p in f)*n) - sum(Fraction(1,p) for p in f)).denominator # _Chai Wah Wu_, May 28 2022
%Y A354433 Cf. A007947, A017666, A018252, A023890, A354432 (numerators).
%K A354433 nonn,frac
%O A354433 1,4
%A A354433 _Ilya Gutkovskiy_, May 28 2022