cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354438 Square array A(n, k), n, k >= 0, read by antidiagonals; the factorial base expansion of A(n, k) is obtained by adding componentwise and reducing modulo their radix the digits of the factorial base expansions of n and k.

This page as a plain text file.
%I A354438 #15 Jan 05 2024 12:29:34
%S A354438 0,1,1,2,0,2,3,3,3,3,4,2,4,2,4,5,5,5,5,5,5,6,4,0,4,0,4,6,7,7,1,1,1,1,
%T A354438 7,7,8,6,8,0,2,0,8,6,8,9,9,9,9,3,3,9,9,9,9,10,8,10,8,10,2,10,8,10,8,
%U A354438 10,11,11,11,11,11,11,11,11,11,11,11,11
%N A354438 Square array A(n, k), n, k >= 0, read by antidiagonals; the factorial base expansion of A(n, k) is obtained by adding componentwise and reducing modulo their radix the digits of the factorial base expansions of n and k.
%C A354438 The nonnegative integers together with A form an abelian group; A225901 gives inverse elements.
%C A354438 Each row is a permutation of the nonnegative integers.
%H A354438 Andrew Howroyd, <a href="/A354438/b354438.txt">Table of n, a(n) for n = 0..1325</a> (first 51 antidiagonals)
%H A354438 Rémy Sigrist, <a href="/A354438/a354438.png">Colored representation of the array A(n, k) for n, k < 7!</a> (the hue is function of A(n, k), black pixels correspond to 0's)
%H A354438 <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>
%F A354438 A(n, k) = A(k, n).
%F A354438 A(m, A(n, k)) = A(A(m, n), k).
%F A354438 A(n, 0) = n.
%F A354438 A(n, k) = 0 iff k = A225901(n).
%F A354438 A(n, 1) = A004442(n).
%e A354438 Square array A(n, k) begins:
%e A354438   n\k|   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
%e A354438   ---+----------------------------------------------------------------
%e A354438     0|   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
%e A354438     1|   1   0   3   2   5   4   7   6   9   8  11  10  13  12  15  14
%e A354438     2|   2   3   4   5   0   1   8   9  10  11   6   7  14  15  16  17
%e A354438     3|   3   2   5   4   1   0   9   8  11  10   7   6  15  14  17  16
%e A354438     4|   4   5   0   1   2   3  10  11   6   7   8   9  16  17  12  13
%e A354438     5|   5   4   1   0   3   2  11  10   7   6   9   8  17  16  13  12
%e A354438     6|   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20  21
%e A354438     7|   7   6   9   8  11  10  13  12  15  14  17  16  19  18  21  20
%e A354438     8|   8   9  10  11   6   7  14  15  16  17  12  13  20  21  22  23
%e A354438     9|   9   8  11  10   7   6  15  14  17  16  13  12  21  20  23  22
%e A354438    10|  10  11   6   7   8   9  16  17  12  13  14  15  22  23  18  19
%e A354438    11|  11  10   7   6   9   8  17  16  13  12  15  14  23  22  19  18
%e A354438    12|  12  13  14  15  16  17  18  19  20  21  22  23   0   1   2   3
%e A354438    13|  13  12  15  14  17  16  19  18  21  20  23  22   1   0   3   2
%e A354438    14|  14  15  16  17  12  13  20  21  22  23  18  19   2   3   4   5
%e A354438    15|  15  14  17  16  13  12  21  20  23  22  19  18   3   2   5   4
%o A354438 (PARI) A(n,k, s=i->i+1) = { my (v=0, f=1, r); for (i=1, oo, if (n==0 && k==0, return (v), r=s(i); v+=f*((n+k)%r); f*=r; n\=r; k\=r)) }
%Y A354438 Cf. A003987, A004442, A108731, A225901, A354470 (primorial base analog).
%K A354438 nonn,tabl,base
%O A354438 0,4
%A A354438 _Rémy Sigrist_, May 28 2022