This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354448 #25 Mar 10 2025 14:51:08 %S A354448 58,95,141,415,1241,2101,2951,3683,6031,7421,16531,24383,35333,39433, %T A354448 42001,50191,53083,66551,83981,95411,123421,146791,173951,182911, %U A354448 190241,229051,296321,307981,336883,409361,442583,451091,477101,500833,546883,588431,669131 %N A354448 11-gonal numbers which are products of two distinct primes. %C A354448 A squarefree subsequence of 11-gonal numbers, i.e., numbers of the form k*(9*k-7)/2. %C A354448 Numbers of the form p*(9*p-7)/2 where p and (9*p-7)/2 are prime, and numbers of the form p*(18*p-7) where p and 18*p-7 are prime. - _Robert Israel_, Mar 03 2025 %H A354448 Robert Israel, <a href="/A354448/b354448.txt">Table of n, a(n) for n = 1..10000</a> %e A354448 58 = 4*(9*4 - 7)/2 = 2*29; %e A354448 141 = 6*(9*6 - 7)/2 = 3*47; %e A354448 415 = 10*(9*10 - 7)/2 = 5*83; %e A354448 3683 = 29*(9*29 - 7)/2 = 29*127. %p A354448 N:= 10^6: # for terms <= N %p A354448 x1:= floor(fsolve(x*(9*x-7)/2=N)[2]): %p A354448 A:= map(p -> p*(9*p-7)/2, select(p -> isprime(p) and isprime((9*p-7)/2), [seq(i,i=3..x1,2)])): %p A354448 x2:= floor(fsolve(x*(18*x-7)=N)[2]): %p A354448 B:= map(p -> p*(18*p-7), select(p -> isprime(p) and isprime(18*p-7), %p A354448 [2, seq(i,i=3..x2,2)])): %p A354448 sort([op(A),op(B)]); # _Robert Israel_, Mar 03 2025 %t A354448 Select[Table[n*(9*n - 7)/2, {n, 1, 400}], FactorInteger[#][[;; , 2]] == {1, 1} &] (* _Amiram Eldar_, May 30 2022 *) %o A354448 (Python) %o A354448 from sympy import factorint %o A354448 from itertools import count, islice %o A354448 def agen(): %o A354448 for h in (k*(9*k - 7)//2 for k in count(1)): %o A354448 f = factorint(h, multiple=True) %o A354448 if len(f) == len(set(f)) == 2: yield h %o A354448 print(list(islice(agen(), 37))) # _Michael S. Branicky_, May 30 2022 %Y A354448 Intersection of A051682 and A006881. %K A354448 nonn %O A354448 1,1 %A A354448 _Massimo Kofler_, May 30 2022