This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354457 #64 Jun 04 2024 15:36:26 %S A354457 6,36,240,2520,30240,443520,6652800,133056000,2075673600,58118860800, %T A354457 1270312243200,29640619008000,844757641728000,25342729251840000, %U A354457 810967336058880000,27978373094031360000,1077167364120207360000,43086694564808294400000,1499416970855328645120000 %N A354457 a(n) is the least integer for which there exist two disjoint sets of n positive integers each, all distinct, for which the product of the integers in either set is a(n). %C A354457 This is also the least integer that can be represented as the product of the integers > 1 in two disjoint sets, one having n terms and the other having n-1 terms. %C A354457 From _Jon E. Schoenfield_, May 12 2024: (Start) %C A354457 For n >= 2, let b(n) be the square root of the smallest square that can be expressed as the product of 2*n distinct positive integers; then a(n) >= b(n). %C A354457 Conjecture: for every n >= 2, a(n) = b(n). (End) %H A354457 Zhao Hui Du, <a href="/A354457/b354457.txt">Table of n, a(n) for n = 2..28</a> %H A354457 Shouwen Wang, <a href="https://bbs.emath.ac.cn/forum.php?mod=viewthread&tid=19390&page=4#pid100355">Discussion on Chinese BBS on A354457</a> %e A354457 From _Jinyuan Wang_, May 31 2022: (Start) %e A354457 For n=2, 6 = 1*6 = 2 * 3. %e A354457 For n=3, 36 = 1*4*9 = 2 * 3 * 6. %e A354457 For n=4, 240 = 1*3*8*10 = 2 * 4 * 5 * 6. %e A354457 For n=5, 2520 = 1*2*9*10*14 = 3 * 4 * 5 * 6 * 7. %e A354457 For n=6, 30240 = 1*2*6*10*14*18 = 3 * 4 * 5 * 7 * 8 * 9. %e A354457 For n=7, 443520 = 1*2*5*9*14*16*22 = 3 * 4 * 6 * 7 * 8 *10 *11. %e A354457 For n=8, 6652800 = 1*2*3*12*14*15*20*22 = 4 * 5 * 6 * 7 * 8 * 9 *10 *11. (End) %e A354457 From _Zhao Hui Du_, May 11 2024: (Start) %e A354457 For n=9, 133056000 = 1*2*3*9*14*16*20*22*25 = 4*5*6*7*8*10*11*12*15. %e A354457 For n=10, 2075673600 = 1*2*3*7*15*16*18*20*22*26 = 4*5*6*8*9*10*11*12*13*14. (End) %Y A354457 Cf. A001055, A025487, A354697. %K A354457 nonn %O A354457 2,1 %A A354457 _Andy Niedermaier_, May 30 2022 %E A354457 a(7)-a(8) from _Jinyuan Wang_, May 31 2022 %E A354457 a(9)-a(10) from _Zhao Hui Du_, May 11 2024 %E A354457 a(11)-a(20) from _Jon E. Schoenfield_, May 11 2024