cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354457 a(n) is the least integer for which there exist two disjoint sets of n positive integers each, all distinct, for which the product of the integers in either set is a(n).

This page as a plain text file.
%I A354457 #64 Jun 04 2024 15:36:26
%S A354457 6,36,240,2520,30240,443520,6652800,133056000,2075673600,58118860800,
%T A354457 1270312243200,29640619008000,844757641728000,25342729251840000,
%U A354457 810967336058880000,27978373094031360000,1077167364120207360000,43086694564808294400000,1499416970855328645120000
%N A354457 a(n) is the least integer for which there exist two disjoint sets of n positive integers each, all distinct, for which the product of the integers in either set is a(n).
%C A354457 This is also the least integer that can be represented as the product of the integers > 1 in two disjoint sets, one having n terms and the other having n-1 terms.
%C A354457 From _Jon E. Schoenfield_, May 12 2024: (Start)
%C A354457 For n >= 2, let b(n) be the square root of the smallest square that can be expressed as the product of 2*n distinct positive integers; then a(n) >= b(n).
%C A354457 Conjecture: for every n >= 2, a(n) = b(n). (End)
%H A354457 Zhao Hui Du, <a href="/A354457/b354457.txt">Table of n, a(n) for n = 2..28</a>
%H A354457 Shouwen Wang, <a href="https://bbs.emath.ac.cn/forum.php?mod=viewthread&amp;tid=19390&amp;page=4#pid100355">Discussion on Chinese BBS on A354457</a>
%e A354457 From _Jinyuan Wang_, May 31 2022: (Start)
%e A354457 For n=2,       6 = 1*6                  = 2 * 3.
%e A354457 For n=3,      36 = 1*4*9                = 2 * 3 * 6.
%e A354457 For n=4,     240 = 1*3*8*10             = 2 * 4 * 5 * 6.
%e A354457 For n=5,    2520 = 1*2*9*10*14          = 3 * 4 * 5 * 6 * 7.
%e A354457 For n=6,   30240 = 1*2*6*10*14*18       = 3 * 4 * 5 * 7 * 8 * 9.
%e A354457 For n=7,  443520 = 1*2*5*9*14*16*22     = 3 * 4 * 6 * 7 * 8 *10 *11.
%e A354457 For n=8, 6652800 = 1*2*3*12*14*15*20*22 = 4 * 5 * 6 * 7 * 8 * 9 *10 *11. (End)
%e A354457 From _Zhao Hui Du_, May 11 2024: (Start)
%e A354457 For n=9, 133056000 = 1*2*3*9*14*16*20*22*25 = 4*5*6*7*8*10*11*12*15.
%e A354457 For n=10, 2075673600 = 1*2*3*7*15*16*18*20*22*26 = 4*5*6*8*9*10*11*12*13*14. (End)
%Y A354457 Cf. A001055, A025487, A354697.
%K A354457 nonn
%O A354457 2,1
%A A354457 _Andy Niedermaier_, May 30 2022
%E A354457 a(7)-a(8) from _Jinyuan Wang_, May 31 2022
%E A354457 a(9)-a(10) from _Zhao Hui Du_, May 11 2024
%E A354457 a(11)-a(20) from _Jon E. Schoenfield_, May 11 2024