This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354463 #32 Jun 25 2022 21:44:36 %S A354463 0,0,0,1,3,7,14,31,63,126,253,509,1021,2045,4094,8189,16380,32763, %T A354463 65531,131067,262140,524285,1048571,2097146,4194297,8388603,16777208, %U A354463 33554424,67108858,134217720,268435446,536870902,1073741816,2147483642,4294967289,8589934584,17179869176,34359738358,68719476729 %N A354463 a(n) is the number of trailing zeros in (2^n)!. %H A354463 William Boyles, <a href="/A354463/b354463.txt">Table of n, a(n) for n = 0..650</a> %F A354463 a(n) = A027868(A000079(n)). - _Michel Marcus_, Jun 01 2022 %F A354463 a(n) = 2^(n-2) - A055223(n) for n >= 2. - _John Keith_, Jun 06 2022 %e A354463 For n = 4, (2^4)! = 20922789888000, which has a(4) = 3 trailing zeros. %t A354463 a[n_]:=IntegerExponent[(2^n)!]; Array[a,38,0] (* _Stefano Spezia_, Jun 01 2022 *) %o A354463 (Haskell) %o A354463 seq n = aux (2 ^ n) 0 %o A354463 where %o A354463 aux x acc %o A354463 | x < 5 = acc %o A354463 | otherwise = aux y (acc + y) %o A354463 where %o A354463 y = x `div` 5 %o A354463 (PARI) a(n) = val(1<<n, 5) %o A354463 val(n, p) = my(r=0); while(n, r+=n\=p); r \\ _David A. Corneth_, Jun 01 2022 %o A354463 (Python) %o A354463 from sympy import factorial, multiplicity %o A354463 def a(n): return multiplicity(5, factorial(2**n, evaluate=False)) %o A354463 print([a(n) for n in range(39)]) # _Michael S. Branicky_, Jun 01 2022 %o A354463 (Python) %o A354463 def A354463(n): %o A354463 c, m = 0, 2**n %o A354463 while m >= 5: %o A354463 m //= 5 %o A354463 c += m %o A354463 return c # _Chai Wah Wu_, Jun 02 2022 %Y A354463 Cf. A000079, A027868. %K A354463 nonn,easy,base %O A354463 0,5 %A A354463 _William Boyles_, May 31 2022