cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354466 Numbers k such that the decimal expansion of the sum of the reciprocals of the digits of k starts with the digits of k in the same order.

This page as a plain text file.
%I A354466 #46 Dec 19 2024 11:48:12
%S A354466 1,13,145,153,1825,15789,16666,21583,216666,2416666,28428571,
%T A354466 265833333,3194444444,3333333333,9111111111,35333333333,3166666666666,
%U A354466 3819444444444,26666666666666,34166666666666,527857142857142,3944444444444444,6135714285714285,615833333333333333
%N A354466 Numbers k such that the decimal expansion of the sum of the reciprocals of the digits of k starts with the digits of k in the same order.
%C A354466 The sequence is infinite because all numbers of the form 10^(10^n-6) + 6*(10^(10^n-6)-1)/9, (n>0) are terms.
%C A354466 All terms are zeroless since 1/0 is undefined.
%C A354466 If n gives a sum < 1 then that sum is taken as 0.xyz.. but n does not start with 0, so not a term.
%H A354466 Kevin Ryde, <a href="/A354466/b354466.txt">Table of n, a(n) for n = 1..382</a>
%H A354466 Michael S. Branicky, <a href="/A354466/a354466_1.py.txt">Python program</a>
%H A354466 Kevin Ryde, <a href="/A354466/a354466.gp.txt">PARI/GP Code</a>
%e A354466 28428571 is a term because 1/2 + 1/8 + 1/4 + 1/2 + 1/8 + 1/5 + 1/7 + 1/1 = 2.8428571...
%e A354466 825 is not a term since 1/8 + 1/2 + 1/5 = 0.825.
%t A354466 Do[If[FreeQ[IntegerDigits[n], 0]&&Floor[Total[1/IntegerDigits[n]]*10^(IntegerLength[n]-IntegerLength[Floor[Total[1/IntegerDigits[n]]]])]==n&&Floor[Total[1/IntegerDigits[n]]]>0, Print[n]], {n, 1, 216666}]
%o A354466 (Python) # See links.
%o A354466 (PARI) \\ See links.
%Y A354466 Cf. A009994, A034708, A337904.
%K A354466 nonn,base
%O A354466 1,2
%A A354466 _Metin Sariyar_, Jun 01 2022
%E A354466 a(12)-a(24) from _Michael S. Branicky_, Jun 03 2022