This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354466 #46 Dec 19 2024 11:48:12 %S A354466 1,13,145,153,1825,15789,16666,21583,216666,2416666,28428571, %T A354466 265833333,3194444444,3333333333,9111111111,35333333333,3166666666666, %U A354466 3819444444444,26666666666666,34166666666666,527857142857142,3944444444444444,6135714285714285,615833333333333333 %N A354466 Numbers k such that the decimal expansion of the sum of the reciprocals of the digits of k starts with the digits of k in the same order. %C A354466 The sequence is infinite because all numbers of the form 10^(10^n-6) + 6*(10^(10^n-6)-1)/9, (n>0) are terms. %C A354466 All terms are zeroless since 1/0 is undefined. %C A354466 If n gives a sum < 1 then that sum is taken as 0.xyz.. but n does not start with 0, so not a term. %H A354466 Kevin Ryde, <a href="/A354466/b354466.txt">Table of n, a(n) for n = 1..382</a> %H A354466 Michael S. Branicky, <a href="/A354466/a354466_1.py.txt">Python program</a> %H A354466 Kevin Ryde, <a href="/A354466/a354466.gp.txt">PARI/GP Code</a> %e A354466 28428571 is a term because 1/2 + 1/8 + 1/4 + 1/2 + 1/8 + 1/5 + 1/7 + 1/1 = 2.8428571... %e A354466 825 is not a term since 1/8 + 1/2 + 1/5 = 0.825. %t A354466 Do[If[FreeQ[IntegerDigits[n], 0]&&Floor[Total[1/IntegerDigits[n]]*10^(IntegerLength[n]-IntegerLength[Floor[Total[1/IntegerDigits[n]]]])]==n&&Floor[Total[1/IntegerDigits[n]]]>0, Print[n]], {n, 1, 216666}] %o A354466 (Python) # See links. %o A354466 (PARI) \\ See links. %Y A354466 Cf. A009994, A034708, A337904. %K A354466 nonn,base %O A354466 1,2 %A A354466 _Metin Sariyar_, Jun 01 2022 %E A354466 a(12)-a(24) from _Michael S. Branicky_, Jun 03 2022