cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354470 Square array A(n, k), n, k >= 0, read by antidiagonals; the primorial base expansion of A(n, k) is obtained by adding componentwise and reducing modulo their radix the digits of the primorial base expansions of n and k.

This page as a plain text file.
%I A354470 #8 Jun 05 2022 08:33:35
%S A354470 0,1,1,2,0,2,3,3,3,3,4,2,4,2,4,5,5,5,5,5,5,6,4,0,4,0,4,6,7,7,1,1,1,1,
%T A354470 7,7,8,6,8,0,2,0,8,6,8,9,9,9,9,3,3,9,9,9,9,10,8,10,8,10,2,10,8,10,8,
%U A354470 10,11,11,11,11,11,11,11,11,11,11,11,11
%N A354470 Square array A(n, k), n, k >= 0, read by antidiagonals; the primorial base expansion of A(n, k) is obtained by adding componentwise and reducing modulo their radix the digits of the primorial base expansions of n and k.
%C A354470 The nonnegative integers together with A form an abelian group; A354469 gives inverse elements.
%C A354470 Each row is a permutation of the nonnegative integers.
%H A354470 Rémy Sigrist, <a href="/A354470/a354470.png">Colored representation of the array A(n, k) for n, k < 2*3*5*7*11</a> (the hue is function of A(n, k), black pixels correspond to 0's)
%H A354470 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%F A354470 A(n, k) = A(k, n).
%F A354470 A(m, A(n, k)) = A(A(m, n), k).
%F A354470 A(n, 0) = n.
%F A354470 A(n, k) = 0 iff k = A354469(n).
%F A354470 A(n, 1) = A004442(n).
%e A354470 Square array A(n, k) begins:
%e A354470   n\k|   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
%e A354470   ---+----------------------------------------------------------------
%e A354470     0|   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
%e A354470     1|   1   0   3   2   5   4   7   6   9   8  11  10  13  12  15  14
%e A354470     2|   2   3   4   5   0   1   8   9  10  11   6   7  14  15  16  17
%e A354470     3|   3   2   5   4   1   0   9   8  11  10   7   6  15  14  17  16
%e A354470     4|   4   5   0   1   2   3  10  11   6   7   8   9  16  17  12  13
%e A354470     5|   5   4   1   0   3   2  11  10   7   6   9   8  17  16  13  12
%e A354470     6|   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20  21
%e A354470     7|   7   6   9   8  11  10  13  12  15  14  17  16  19  18  21  20
%e A354470     8|   8   9  10  11   6   7  14  15  16  17  12  13  20  21  22  23
%e A354470     9|   9   8  11  10   7   6  15  14  17  16  13  12  21  20  23  22
%e A354470    10|  10  11   6   7   8   9  16  17  12  13  14  15  22  23  18  19
%e A354470    11|  11  10   7   6   9   8  17  16  13  12  15  14  23  22  19  18
%e A354470    12|  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27
%e A354470    13|  13  12  15  14  17  16  19  18  21  20  23  22  25  24  27  26
%e A354470    14|  14  15  16  17  12  13  20  21  22  23  18  19  26  27  28  29
%e A354470    15|  15  14  17  16  13  12  21  20  23  22  19  18  27  26  29  28
%o A354470 (PARI) A(n,k, s=i->prime(i)) = { my (v=0, f=1, r); for (i=1, oo, if (n==0 && k==0, return (v), r=s(i); v+=f*((n+k)%r); f*=r; n\=r; k\=r)) }
%Y A354470 Cf. A004442, A235168, A354438 (factorial base analog), A354469.
%K A354470 nonn,base,tabl
%O A354470 0,4
%A A354470 _Rémy Sigrist_, Jun 02 2022