This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354478 #13 Jun 03 2022 07:43:20 %S A354478 1,0,7,25,3991,3923773,4901627,527165212865,9823031039961293027, %T A354478 123877274974851473572937,443645907754951021537851199, %U A354478 246932542361393897304051461727006396307,1474846779473982897350113519971401527250089,46578509609937575127608478711343978511593638945099881 %N A354478 a(n) is the numerator of Sum_{k=1..n} 1 / Stirling1(n,k). %C A354478 Conjecture: a(n)/A354479(n) tends to 1 as n tends to infinity. For comparison: A112290(n)/A112291(n) tends to 2 as n tends to infinity. - _Vaclav Kotesovec_, Jun 02 2022 %e A354478 1, 0, 7/6, 25/33, 3991/4200, 3923773/4192200, 4901627/5115600, 527165212865/545250747888, ... %t A354478 Table[Sum[1/StirlingS1[n, k], {k, 1, n}], {n, 1, 14}] // Numerator %o A354478 (PARI) a(n) = numerator(sum(k=1, n, 1/stirling(n, k, 1))); \\ _Michel Marcus_, Jun 02 2022 %Y A354478 Cf. A008275, A046825, A112288, A112290, A354479 (denominators). %K A354478 nonn,frac %O A354478 1,3 %A A354478 _Ilya Gutkovskiy_, Jun 02 2022