cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354487 Triangle read by rows: T(n,k) is the denominator of the n-th term of the Somos-k sequence, 4 <= k <= n.

This page as a plain text file.
%I A354487 #11 Feb 16 2025 08:34:03
%S A354487 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
%T A354487 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
%U A354487 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,7,1,1,1,1,1,1,1,1,1,1,1,1,1,91,1,1,1,1,1,1,1,1,1,1
%N A354487 Triangle read by rows: T(n,k) is the denominator of the n-th term of the Somos-k sequence, 4 <= k <= n.
%H A354487 Pontus von Brömssen, <a href="/A354487/b354487.txt">Rows n = 4..36, flattened</a>
%H A354487 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SomosSequence.html">Somos Sequence</a>
%H A354487 Wikipedia, <a href="https://en.wikipedia.org/wiki/Somos_sequence">Somos sequence</a>
%F A354487 T(n,k) = 1 if 4 <= k <= 7 or n < A030127(k).
%e A354487 Triangle begins:
%e A354487   n\k| 4  5  6  7      8  9 10 11 12 13 14 15 16 17 18 19 20
%e A354487   ---+------------------------------------------------------
%e A354487    4 | 1
%e A354487    5 | 1  1
%e A354487    6 | 1  1  1
%e A354487    7 | 1  1  1  1
%e A354487    8 | 1  1  1  1      1
%e A354487    9 | 1  1  1  1      1  1
%e A354487   10 | 1  1  1  1      1  1  1
%e A354487   11 | 1  1  1  1      1  1  1  1
%e A354487   12 | 1  1  1  1      1  1  1  1  1
%e A354487   13 | 1  1  1  1      1  1  1  1  1  1
%e A354487   14 | 1  1  1  1      1  1  1  1  1  1  1
%e A354487   15 | 1  1  1  1      1  1  1  1  1  1  1  1
%e A354487   16 | 1  1  1  1      1  1  1  1  1  1  1  1  1
%e A354487   17 | 1  1  1  1      7  1  1  1  1  1  1  1  1  1
%e A354487   18 | 1  1  1  1     91  1  1  1  1  1  1  1  1  1  1
%e A354487   19 | 1  1  1  1   2275  7  1  1  1  1  1  1  1  1  1  1
%e A354487   20 | 1  1  1  1 138775  7  5  1  1  1  1  1  1  1  1  1  1
%Y A354487 Cf. A354486 (numerators), A030127.
%K A354487 nonn,tabl,frac
%O A354487 4,96
%A A354487 _Pontus von Brömssen_, May 28 2022