cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354488 T(w,h) with 3 <= h < w is the number of quadrilaterals as defined in A353532 with diagonals intersecting at the same angle theta as the diagonals of the grid rectangle with side lengths w > h, where T(w,h) is a triangle read by rows.

This page as a plain text file.
%I A354488 #10 Dec 19 2024 11:53:22
%S A354488 0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
%T A354488 0,0,0,0,0,3,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,
%U A354488 0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,23,0,0,0,0,0,0,0
%N A354488 T(w,h) with 3 <= h < w is the number of quadrilaterals as defined in A353532 with diagonals intersecting at the same angle theta as the diagonals of the grid rectangle with side lengths w > h, where T(w,h) is a triangle read by rows.
%C A354488 The integer coordinates of the 4 vertices of the quadrilateral are (x1,0), (w,y2), (x3,h), (0,y4), 0 < x1, x3 < w, 0 < y2, y4 < h, such that the 6 distances between the 4 vertices are distinct.
%C A354488 Quadrilaterals with this property cannot occur for rectangles with h = 2 and for rectangles with h = w. Thus the triangle is given without the column h = 2 and the diagonal h = w.
%C A354488 The relationship to A353532 is that the number of lattice points n X m is used there, while here the side lengths of the lattice rectangle w = n - 1 and h = m - 1 are used.
%C A354488 The intersection angle of the rectangle's diagonals is delta = 2*phi, where phi is the angle between a diagonal and a longer side of the grid rectangle. So tan(delta) = 2*tan(phi)/(1 - tan(phi)^2) where tan(phi) = h/w, i.e., tan(delta) = 2*w*h/(w^2 - h^2).
%H A354488 Hugo Pfoertner, <a href="/A354488/a354488.gp.txt">PARI program to print list of nonzero sequence terms</a>.
%e A354488 The triangle begins:
%e A354488    4: 0,
%e A354488    5: 0,0,
%e A354488    6: 0,0, 0,
%e A354488    7: 0,0, 0, 0,
%e A354488    8: 0,3, 0, 0, 0,
%e A354488    9: 4,0, 0, 0, 0, 0,
%e A354488   10: 0,0, 0, 0, 0, 0, 0,
%e A354488   11: 0,0, 0, 0, 0, 0, 0, 0,
%e A354488   12: 0,0, 0, 3, 0,11, 0, 0,0,
%e A354488   13: 0,0, 0, 0, 0, 0, 0, 0,0,  0,
%e A354488   14: 0,0, 0, 0,12, 0, 0, 0,0,  0,0,
%e A354488   15: 0,0, 0, 0, 0, 0, 0,32,0,  0,0, 0,
%e A354488   16: 0,0, 0, 0, 0,23, 0, 0,0,  0,0, 0,  0,
%e A354488   17: 0,0, 0, 0, 0, 0, 0, 0,0,  0,0, 0,  0, 0,
%e A354488   18: 0,0, 0,33, 0, 0,51, 0,0, 53,0, 0,  0, 0,0,
%e A354488   19: 0,0, 0, 0, 0, 0, 0, 0,0,  0,0, 0,  0, 0,0, 0,
%e A354488   20: 0,0, 0, 0, 0, 0, 0, 0,0, 46,0, 0,  0, 0,0, 0,0,
%e A354488   21: 0,0, 0, 0,18, 0, 0, 0,0,  0,0, 0,  0, 0,0, 0,0,0,
%e A354488   22: 0,0, 0, 0, 0, 0, 0, 0,0,  0,0, 0,  0, 0,0, 0,0,0,  0,
%e A354488   23: 0,0, 0, 0, 0, 0, 0, 0,0,  0,0, 0,  0, 0,0, 0,0,0,  0,0,
%e A354488   24: 0,0, 0, 0, 0,53, 0, 0,0,107,0, 0,  0,57,0,91,0,0,  0,0,0,
%e A354488   25: 0,0,24, 0, 0, 0, 0, 0,0,  0,0, 0,108, 0,0, 0,0,0,  0,0,0,0,
%e A354488   26: 0,0, 0, 0, 0, 0, 0, 0,0,  0,0, 0,  0, 0,0, 0,0,0,  0,0,0,0,0,
%e A354488   27: 0,0, 0, 0, 0, 0,55, 0,0,  0,0, 0,  0, 0,0, 0,0,0,  0,0,0,0,0,0,
%e A354488   28: 0,0, 0, 0, 0, 0, 0, 0,0,  0,0,57,  0, 0,0, 0,0,0,182,0,0,0,0,0,0,
%e A354488   29: 0,0, 0, 0, 0, 0, 0, 0,0,  0,0, 0,  0, 0,0, 0,0,0,  0,0,0,0,0,0,0,0
%e A354488    n  ------------------------------------------------------------------
%e A354488    m: 3 4  5  6  7  8  9 10 .  12 . 14  15 16 . 18 . .  21 . . . . . . 28
%e A354488 .
%e A354488 T(8,4) = 3, tan(theta) = 4/3 = tan(2*phi).
%e A354488 Intersection angle of diagonals of the grid rectangle:
%e A354488 tan(2*phi) = 2 *(1/2) / (1 - (1/2)^2) = 1 / (3/4) = 4/3, with tan(phi) = 4/8 = 1/2.
%e A354488 .
%e A354488   4 | . . . . . C . . .   4 | . . . . . C . . .   4 | . . . . . . C . .
%e A354488   3 | . . . . . . . . .   3 | . . . . . . . . .   3 | . . . . . . . . .
%e A354488   2 | . . . . . . . . .   3 | D . . . . . . . B   2 | . . . . . . . . .
%e A354488   1 | D . . . . . . . B   1 | . . . . . . . . .   1 | D . . . . . . . B
%e A354488   0 | . . A . . . . . .   0 | . . A . . . . . .   0 | . . . A . . . . .
%e A354488   y /------------------   y /------------------   y /------------------
%e A354488     x 0 1 2 3 4 5 6 7 8     x 0 1 2 3 4 5 6 7 8     x 0 1 2 3 4 5 6 7 8
%e A354488 .
%e A354488 T(9,3) = 4, tan(theta) = 3/4 = tan(2*phi).
%e A354488 tan(phi) = 3/9 = 1/3, tan(2*phi) = 2*(1/3)/(1 - (1/3)^2) = (2/3)/(8/9) = 18/24 = 3/4.
%e A354488 .
%e A354488   3 | . . . . . C . . . .       3 | . . . . . C . . . .
%e A354488   2 | . . . . . . . . . .       2 | D . . . . . . . . B
%e A354488   1 | D . . . . . . . . B       1 | . . . . . . . . . .
%e A354488   0 | . A . . . . . . . .       0 | . A . . . . . . . .
%e A354488   y /--------------------       y /--------------------
%e A354488     x 0 1 2 3 4 5 6 7 8 9         x 0 1 2 3 4 5 6 7 8 9
%e A354488 .
%e A354488   3 | . . . . . . C . . .       3 | . . . . . . C . . .
%e A354488   2 | . . . . . . . . . .       2 | D . . . . . . . . B
%e A354488   1 | D . . . . . . . . B       1 | . . . . . . . . . .
%e A354488   0 | . . A . . . . . . .       0 | . . A . . . . . . .
%e A354488   y /--------------------       y /--------------------
%e A354488     x 0 1 2 3 4 5 6 7 8 9         x 0 1 2 3 4 5 6 7 8 9
%e A354488 .
%e A354488 T(12,6) = 3, with slopes of diagonals of quadrilateral against y = 0: sAC, sDB, sAC = 6/2 = 3, sDB = 4/12 = 1/3, angle difference theta = sAC - sDB.
%e A354488 Using tan(alpha - beta) = (tan(alpha) - tan(beta))/(1 + tan(alpha)*tan(beta)), tan(theta) = (sAC - sBD) / (1 + sAC*sBD) = (3 - 1/3)/( 1 + 1 ) = 4/3.
%e A354488 tan(phi) = 6/12 = 1/2; tan(2*phi) = 2*(1/2)/(1 - (1/2)^2) = 1/(3/4) = 4/3.
%e A354488 .
%e A354488   6 | . . . C . . . . . . . . .       6 | . . . . C . . . . . . . .
%e A354488   5 | . . . . . . . . . . . . B       5 | . . . . . . . . . . . . B
%e A354488   4 | . . . . . . . . . . . . .       4 | . . . . . . . . . . . . .
%e A354488   3 | . . . . . . . . . . . . .       3 | . . . . . . . . . . . . .
%e A354488   2 | . . . . . . . . . . . . .       2 | . . . . . . . . . . . . .
%e A354488   1 | D . . . . . . . . . . . .       1 | D . . . . . . . . . . . .
%e A354488   0 | . A . . . . . . . . . . .       0 | . . A . . . . . . . . . .
%e A354488   y /--------------------------       y /--------------------------
%e A354488     x 0 1 2 3 4 5 6 7 8 9 0 1 2         x 0 1 2 3 4 5 6 7 8 9 0 1 2
%e A354488 .
%e A354488   6 | . . . . . . C . . . . . .
%e A354488   5 | . . . . . . . . . . . . B
%e A354488   4 | . . . . . . . . . . . . .
%e A354488   3 | . . . . . . . . . . . . .
%e A354488   2 | . . . . . . . . . . . . .
%e A354488   1 | D . . . . . . . . . . . .
%e A354488   0 | . . . . A . . . . . . . .
%e A354488   y /--------------------------
%e A354488     x 0 1 2 3 4 5 6 7 8 9 0 1 2
%o A354488 (PARI) \\ See link. The program a354488(w1,w2) prints a list of the nonzero terms [w, d, T_a353532(w+1,d+1), T(w,d)] in the range w1 <= w <= w2.
%Y A354488 Cf. A353532, A353533.
%Y A354488 A354489 provides the widths of those grid rectangles for which no inserted quadrilaterals with matching angles of the diagonals exist, i.e., all terms = 0 in a row of the triangle.
%K A354488 nonn,tabl
%O A354488 4,12
%A A354488 _Hugo Pfoertner_ and _Rainer Rosenthal_, May 28 2022