A354494
Number of semi-unital quantales on n elements, up to isomorphism.
Original entry on oeis.org
1, 1, 6, 64, 939, 17578, 403060, 11327795, 440735463
Offset: 1
- P. Eklund, J. G. García, U. Höhle, and J. Kortelainen, (2018). Semigroups in complete lattices. In Developments in Mathematics (Vol. 54). Springer Cham.
- K. I. Rosenthal, Quantales and their applications. Longman Scientific and Technical, 1990.
- Arman Shamsgovara, A catalogue of every quantale of order up to 9 (abstract, to appear), LINZ2022, 39th Linz Seminar on Fuzzy Set Theory, Linz, Austria.
A357294
Number of integral quantales on n elements, up to isomorphism.
Original entry on oeis.org
1, 1, 2, 9, 49, 364, 3335, 37026, 496241
Offset: 1
- P. Eklund, J. G. García, U. Höhle, and J. Kortelainen, (2018). Semigroups in complete lattices. In Developments in Mathematics (Vol. 54). Springer Cham.
- K. I. Rosenthal, Quantales and their applications. Longman Scientific and Technical, 1990.
- Arman Shamsgovara, A catalogue of every quantale of order up to 9 (abstract), LINZ2022, 39th Linz Seminar on Fuzzy Set Theory, Linz, Austria.
- Arman Shamsgovara and P. Eklund, A Catalogue of Finite Quantales, GLIOC Notes, December 2019.
Showing 1-2 of 2 results.
Comments