This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354507 #14 Aug 16 2022 10:20:54 %S A354507 1,3,14,48,269,1615,12662,73528,836817,8476243,99348534,948849176, %T A354507 13193115597,177346261391,3684976294222,45021819481808, %U A354507 734808219625345,13524660020400771,290452222949307070,4639956700466396256,128621330002689008237,2735863084773695212719 %N A354507 a(n) = n! * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d+1) * d )/(k * (n-k)!). %F A354507 a(n) = n! * Sum_{k=1..n} A000593(k)/(k * (n-k)!). %F A354507 E.g.f.: -exp(x) * Sum_{k>0} (-x)^k/(k * (1 - x^k)). %F A354507 E.g.f.: exp(x) * Sum_{k>0} log(1 + x^k). %o A354507 (PARI) a(n) = n!*sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1)*d)/(k*(n-k)!)); %o A354507 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(-exp(x)*sum(k=1, N, (-x)^k/(k*(1-x^k))))) %o A354507 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x)*sum(k=1, N, log(1+x^k)))) %Y A354507 Cf. A354506, A354508. %Y A354507 Cf. A000593, A356390. %K A354507 nonn %O A354507 1,2 %A A354507 _Seiichi Manyama_, Aug 15 2022