This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354510 #15 Aug 18 2022 11:45:01 %S A354510 13007,28211,36857,39227,86441,272507,345731,459671,467867,553529, %T A354510 599087,746507,777911,788561,910127,1354901,1425653,1512923,1587587, %U A354510 1710869,2039171,2509061,2624411,3196913,3617597,3896657,4161611,4260077,4359749,4460549,4536893,4639757,5171093,5280791,5673911,5963351 %N A354510 Primes of the form p+q^2+r where p,q,r are three consecutive members of A007528. %C A354510 Primes of the form p+q^2+r where p, q and r are consecutive members of the sequence of primes of the form 6*k-1. %C A354510 All terms == 5 (mod 6). %H A354510 Robert Israel, <a href="/A354510/b354510.txt">Table of n, a(n) for n = 1..10000</a> %e A354510 a(3) = 36857 is in the sequence because 36857 = 179 + 191^2 + 197 and 179 = A007528(21), 191 = A007528(22) and 197 = A007528(23). %p A354510 q:= 5: r:= 11: count:= 0: R:= NULL: %p A354510 while count < 40 do %p A354510 p:= q; q:= r; %p A354510 do r:= r+6 until isprime(r); %p A354510 if isprime(p+q^2+r) then count:= count+1; R:= R, p+q^2+r fi %p A354510 od: %p A354510 R; %t A354510 Select[#[[1]] + #[[2]]^2 + #[[3]] & /@ Partition[Select[Prime[Range[400]], Mod[#1, 6] == 5 &], 3, 1], PrimeQ] (* _Amiram Eldar_, Aug 16 2022 *) %Y A354510 Cf. A007528. %K A354510 nonn %O A354510 1,1 %A A354510 _J. M. Bergot_ and _Robert Israel_, Aug 16 2022