cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354513 The numbers whose square's position in the Wythoff array is immediately followed by another square in the next column.

Original entry on oeis.org

11, 386, 2441, 25748423, 637519684, 2799936925, 3934324789543, 127501370029150, 21274660147684109, 644571595359295797, 15845190736671957299, 995980378496501932493, 47375682236837399943653, 213688560255016550712685, 28372206851301867342910959, 3120729065082950391169492805
Offset: 1

Views

Author

Chittaranjan Pardeshi, Aug 16 2022

Keywords

Comments

From Jianing Song, Aug 21 2022: (Start)
Numbers k > 0 such that floor((k^2+1)*phi) - 1 is a square, phi = A001622.
Suppose that k is a term and that floor((k^2+1)*phi) = m^2+1, then (m^2+1)/(k^2+1) < phi < (m^2+2)/(k^2+1), so |sqrt(phi) - m/k| < max{m/k - sqrt((m^2+1)/(k^2+1)), sqrt((m^2+2)/(k^2+1)) - m/k} = m/k - sqrt((m^2+1)/(k^2+1)) <= sqrt((k^2+1)*phi-1)/k - sqrt(phi) < 1/(2*sqrt(phi)*k^2). According to the Mathematics Stack Exchange link, m/k is a convergent to sqrt(phi), so this is a subsequence of A225205. The terms are b(3), b(5), b(11), b(15), b(19), b(20), ... for b = A225205.
For k = A225205(r), m = A225204(r), we have |sqrt(phi) - m/k| < 1/(k*A225205(r+1)) (by Theorem 5 of the Wikipedia link), so k = A225205(r) is a term if 1/(k*A225205(r+1)) < min{m/k - sqrt((m^2+1)/(k^2+1)), sqrt((m^2+2)/(k^2+1)) - m/k} = sqrt((m^2+2)/(k^2+1)) - m/k, or A225205(r+1) > (k*sqrt((m^2+2)/(k^2+1)) - m)^(-1).
If k = A225205(r) is a term with even r, then k is also in A354549, since m^2 < k^2*phi < k^2*(m^2+2)/(k^2+1) < m^2+phi^(-2) for m = A225204(r), so floor(k^2*phi) = m^2. Furthermore we have {k^2*phi} < phi^(-2), where {} denotes the fractional part. Conversely, if k is in A354549 and {k^2*phi} < phi^(-2), then k is in this sequence since floor((k^2+1)*phi) = floor(k^2*phi)+1 in this case. (End)

Examples

			11 is a term since 11^2 = 121 has another square, 196 = 14^2, immediately to its right in the Wythoff array. Array row: 46, 75, 121, 196, ...
		

Crossrefs

Programs

  • PARI
    phi=quadgen(5);
    nextcolumn(x) = ((x+1)*phi-1)\1; \\ A026274(x+1)
    for(i=1, 10000000000, if ( issquare( nextcolumn (i^2)), print1(i, ", ")));
    
  • PARI
    A000201(n) = (n+sqrtint(5*n^2))\2;
    my(cofr=A331692_vector_bits(1000), conv=matrix(2, #cofr)); conv[, 1]=[1, 1]~; conv[, 2]=[4, 3]~; for(n=3, #cofr, conv[, n]=cofr[n]*conv[, n-1]+conv[, n-2]; if(A000201(conv[2, n]^2+1) == conv[1, n]^2+1, print1(conv[2, n], ", "))) \\ Jianing Song, Aug 21 2022, modified on Aug 28 2022 according to Kevin Ryde's program for A331692