A354512 Number of solutions m >= 2 to m - gpf(m) = n, gpf = A006530.
0, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 1, 2, 2, 0, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 2, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0, 2, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 1, 1, 0, 2, 1, 1, 1, 1, 0, 2
Offset: 1
Examples
a(78) = 2 since the prime factors of 78 are 2,3,13, and we have gpf(78+3) = 3 and gpf(78+13) = 13, so the solutions to m - gpf(m) = 78 are m = 78+3 = 81 or m = 78+13 = 91. Note that gpf(78+2) != 2. a(12) = 0 since the prime factors of 12 are 2,3, and we have gpf(12+2) != 2 and gpf(12+3) != 3.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
gpf(n) = vecmax(factor(n)[, 1]); a(n) = my(f=factor(n)[, 1]); sum(i=1, #f, gpf(n+f[i])==f[i])
Comments