This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354522 #34 Sep 18 2022 12:37:54 %S A354522 0,1,1,2,3,2,3,0,0,3,4,5,4,5,4,5,2,1,1,2,5,6,7,6,7,6,7,6,7,4,3,0,0,3, %T A354522 4,7,8,9,8,9,8,9,8,9,8,9,6,5,2,1,1,2,5,6,9,10,11,10,11,10,11,10,11,10, %U A354522 11,10,11,8,7,4,3,0,0,3,4,7,8,11,12,13,12,13,12,13,12,13,12,13,12,13,12 %N A354522 Square array A(n, k), n, k >= 0, read by antidiagonals; A(n, k) = g(f(n) + f(k)) where f denotes A001057 and g denotes its inverse. %C A354522 This sequence is directly related to A355278. %C A354522 The function f is a bijection from the nonnegative integers to the integers (Z). %C A354522 The nonnegative integers, together with (x,y) -> A(x,y), form an abelian group isomorph to the additive group Z (f and g act as isomorphisms). %C A354522 As a consequence, each row and each column is a permutation of the nonnegative integers. %F A354522 A355278(n+1, k+1) = prime(1 + A(n, k)) (where prime(m) denotes the m-th prime number). %F A354522 A(n, k) = A(k, n). %F A354522 A(n, 0) = n. %F A354522 A(n, A014681(n)) = 0. %F A354522 A(m, A(n, k)) = A(A(m, n), k). %F A354522 A(n, n) = A014601(n). %F A354522 A(n, A(n, n)) = A047264(n+1). %F A354522 A(A(n, n), A(n, n)) = A047521(n+1). %e A354522 Array A(n, k) begins: %e A354522 n\k | 0 1 2 3 4 5 6 7 8 9 10 11 12 %e A354522 ----+--------------------------------------------------- %e A354522 0 | 0 1 2 3 4 5 6 7 8 9 10 11 12 %e A354522 1 | 1 3 0 5 2 7 4 9 6 11 8 13 10 %e A354522 2 | 2 0 4 1 6 3 8 5 10 7 12 9 14 %e A354522 3 | 3 5 1 7 0 9 2 11 4 13 6 15 8 %e A354522 4 | 4 2 6 0 8 1 10 3 12 5 14 7 16 %e A354522 5 | 5 7 3 9 1 11 0 13 2 15 4 17 6 %e A354522 6 | 6 4 8 2 10 0 12 1 14 3 16 5 18 %e A354522 7 | 7 9 5 11 3 13 1 15 0 17 2 19 4 %e A354522 8 | 8 6 10 4 12 2 14 0 16 1 18 3 20 %e A354522 9 | 9 11 7 13 5 15 3 17 1 19 0 21 2 %e A354522 10 | 10 8 12 6 14 4 16 2 18 0 20 1 22 %e A354522 11 | 11 13 9 15 7 17 5 19 3 21 1 23 0 %e A354522 12 | 12 10 14 8 16 6 18 4 20 2 22 0 24 %o A354522 (PARI) f(n) = - (-1)^n * ((n+1)\2) %o A354522 g(n) = if (n<=0, -2*n, 2*n-1) %o A354522 A(n, k) = g(f(n) + f(k)) %Y A354522 Cf. A001057, A014601, A014681, A047264, A047521, A355278, A357144. %K A354522 nonn,tabl %O A354522 0,4 %A A354522 _Rémy Sigrist_, Sep 14 2022