This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354528 #26 Sep 23 2022 03:46:56 %S A354528 0,1,1,3,5,3,7,12,12,7,11,21,23,21,11,17,32,39,32,17,23,45,55,61,55, %T A354528 45,23,31,60,77,87,77,60,31,39,77,99,117,119,117,99,77,39,49,96,127, %U A354528 151,161,151,127,96,49,59,117,155,189,203,213 %N A354528 Square array T(m,n) read by antidiagonals - see Comments for definition. %C A354528 T(m,n) is defined as follows: %C A354528 T(m, n) = T(n, m). %C A354528 T(1, n) = floor(n^2/2) - 1. %C A354528 T(2, n) = (n+1)^2 - 4. %C A354528 For m, n >= 3 we have: %C A354528 T(m, n) = m*n*(m + n)/2 - 3, if m and n are both even; %C A354528 = m*n*(m + n)/2 - (m + n)/2 - 1, if m and n are both odd; %C A354528 = m*n*(m + n)/2 - n/2 - 1, if m is odd and n is even. %C A354528 The disorder number M(G) of a graph G is defined to be the maximal length of a walk along the edges of the graph, according to any ordering of its vertices. %C A354528 Conjecture: T(m, n) = M(P_m X P_n) where P_m X P_n is the grid graph of size m X n. %C A354528 The conjecture is proved if m = 1 or n = 1. %D A354528 L. Bulteau, S. Giraudo and S. Vialette, Disorders and Permutations, CPM, 2021. %H A354528 Sela Fried, <a href="https://arxiv.org/abs/2208.03788">The disorder number of a graph</a>, arXiv:2208.03788 [math.CO], 2022. %e A354528 m\n 1 2 3 4 5 6 ... %e A354528 1 0 1 3 7 11 17 %e A354528 2 1 5 12 21 32 45 %e A354528 3 3 12 23 39 55 77 %e A354528 4 7 21 39 61 87 117 %e A354528 5 11 32 55 87 119 161 %e A354528 6 17 45 77 117 161 213 %e A354528 ... %Y A354528 Cf. A047838, A028347, A179094, A354529. %K A354528 nonn,tabl %O A354528 1,4 %A A354528 _Sela Fried_, Aug 16 2022