A354539 Number of decorated Dyck paths of length n without peaks at level 1 ending at arbitrary levels.
1, 1, 1, 2, 5, 8, 18, 31, 71, 126, 290, 527, 1218, 2253, 5223, 9796, 22763, 43170, 100502, 192347, 448476, 864887, 2019121, 3919162, 9159252, 17877619, 41819003, 82021628, 192015633
Offset: 0
Keywords
Links
- H. Prodinger, Skew Dyck paths having no peaks at level 1, JIS 25 (2022) # 22.1.16, section 2.3.
Crossrefs
Cf. A128723 (ending at level 0).
Programs
-
Maple
g := (-2*z^5-3*z^4+z^3-5*z^2-3*z+4-(z^2+3*z+4)*sqrt(1-6*z^2+5*z^4))/2/z/(3+z^2)/(z^2+2*z-1) ; taylor(%,z=0,30) ; gfun[seriestolist](%) ;
Formula
G.f.: (-2*z^5-3*z^4+z^3-5*z^2-3*z+4-(z^2+3*z+4)*sqrt(1-6*z^2+5*z^4))/2/z/(3+z^2)/(z^2+2*z-1) .
D-finite with recurrence 12*(n+1)*a(n) +3*(-5*n-11)*a(n-1) +5*(-19*n+29)*a(n-2) +14*(5*n-4)*a(n-3) +2*(93*n-356)*a(n-4) +2*(20*n-81)*a(n-5) +2*(-22*n+217)*a(n-6) +2*(-35*n+268)*a(n-7) +2*(-27*n+182)*a(n-8) +5*(-5*n+39)*a(n-9) +5*(-n+9)*a(n-10)=0.