cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A356664 Numbers k such that A225205(k) is in A354549.

Original entry on oeis.org

0, 2, 4, 10, 12, 14, 18, 20, 22, 30, 32, 34, 38, 40, 44, 48, 52, 60, 62, 72, 76, 78, 80, 82, 92, 94, 100, 104, 116, 120, 126, 130, 132, 134, 138, 140, 142, 144, 146, 148, 152, 154, 156, 158, 160, 168, 176, 180, 182, 186, 188, 192, 194, 202, 210, 222, 224, 226, 228, 230, 232
Offset: 1

Views

Author

Jianing Song, Aug 21 2022

Keywords

Comments

Numbers k such that floor(A225205(k)^2*phi) = A225204(k)^2, phi = A001622.
Even numbers k such that (A225204(k)^2+1)/A225205(k)^2 > phi.
Even k is a term in A356591 if and only k is in this sequence and {A225205(k)^2*phi} < phi^(-2), where {} denotes the fractional part; see the comments in A354513.
Conjecture: this and A356591 have the same natural density.

Examples

			4 is a term because A225204(4) = 125 and A225205(4) = 159, and floor(125^2*phi) = 159^2.
		

Crossrefs

Programs

  • PARI
    print1("0, "); my(cofr=A331692_vector_bits(1000), conv=matrix(2, #cofr)); conv[, 1]=[1, 1]~; conv[, 2]=[4, 3]~; for(n=3, #cofr, conv[, n]=cofr[n]*conv[, n-1]+conv[, n-2]; if(n%2 == 1 && (conv[1, n]^2+1)^2 - (conv[1, n]^2+1)*(conv[2, n]^2) - (conv[2, n]^2)^2 > 0, print1(n-1, ", ")))
    \\ Here conv[1, n] = A225204(n-1), conv[2, n] = A225205(n-1), n odd implies conv[1, n]/conv[2, n] < sqrt((1+sqrt(5))/2); let A = conv[1, n]^2+1, B = conv[2, n]^2, then A^2 - A*B - B^2 > 0 implies A/B > (1+sqrt(5))/2
    \\ Modified by Jianing Song, Aug 28 2022 according to Kevin Ryde's program for A331692

Formula

A354549(n+1) = A225205(a(n)).

A354513 The numbers whose square's position in the Wythoff array is immediately followed by another square in the next column.

Original entry on oeis.org

11, 386, 2441, 25748423, 637519684, 2799936925, 3934324789543, 127501370029150, 21274660147684109, 644571595359295797, 15845190736671957299, 995980378496501932493, 47375682236837399943653, 213688560255016550712685, 28372206851301867342910959, 3120729065082950391169492805
Offset: 1

Views

Author

Chittaranjan Pardeshi, Aug 16 2022

Keywords

Comments

From Jianing Song, Aug 21 2022: (Start)
Numbers k > 0 such that floor((k^2+1)*phi) - 1 is a square, phi = A001622.
Suppose that k is a term and that floor((k^2+1)*phi) = m^2+1, then (m^2+1)/(k^2+1) < phi < (m^2+2)/(k^2+1), so |sqrt(phi) - m/k| < max{m/k - sqrt((m^2+1)/(k^2+1)), sqrt((m^2+2)/(k^2+1)) - m/k} = m/k - sqrt((m^2+1)/(k^2+1)) <= sqrt((k^2+1)*phi-1)/k - sqrt(phi) < 1/(2*sqrt(phi)*k^2). According to the Mathematics Stack Exchange link, m/k is a convergent to sqrt(phi), so this is a subsequence of A225205. The terms are b(3), b(5), b(11), b(15), b(19), b(20), ... for b = A225205.
For k = A225205(r), m = A225204(r), we have |sqrt(phi) - m/k| < 1/(k*A225205(r+1)) (by Theorem 5 of the Wikipedia link), so k = A225205(r) is a term if 1/(k*A225205(r+1)) < min{m/k - sqrt((m^2+1)/(k^2+1)), sqrt((m^2+2)/(k^2+1)) - m/k} = sqrt((m^2+2)/(k^2+1)) - m/k, or A225205(r+1) > (k*sqrt((m^2+2)/(k^2+1)) - m)^(-1).
If k = A225205(r) is a term with even r, then k is also in A354549, since m^2 < k^2*phi < k^2*(m^2+2)/(k^2+1) < m^2+phi^(-2) for m = A225204(r), so floor(k^2*phi) = m^2. Furthermore we have {k^2*phi} < phi^(-2), where {} denotes the fractional part. Conversely, if k is in A354549 and {k^2*phi} < phi^(-2), then k is in this sequence since floor((k^2+1)*phi) = floor(k^2*phi)+1 in this case. (End)

Examples

			11 is a term since 11^2 = 121 has another square, 196 = 14^2, immediately to its right in the Wythoff array. Array row: 46, 75, 121, 196, ...
		

Crossrefs

Programs

  • PARI
    phi=quadgen(5);
    nextcolumn(x) = ((x+1)*phi-1)\1; \\ A026274(x+1)
    for(i=1, 10000000000, if ( issquare( nextcolumn (i^2)), print1(i, ", ")));
    
  • PARI
    A000201(n) = (n+sqrtint(5*n^2))\2;
    my(cofr=A331692_vector_bits(1000), conv=matrix(2, #cofr)); conv[, 1]=[1, 1]~; conv[, 2]=[4, 3]~; for(n=3, #cofr, conv[, n]=cofr[n]*conv[, n-1]+conv[, n-2]; if(A000201(conv[2, n]^2+1) == conv[1, n]^2+1, print1(conv[2, n], ", "))) \\ Jianing Song, Aug 21 2022, modified on Aug 28 2022 according to Kevin Ryde's program for A331692
Showing 1-2 of 2 results.