This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354559 #19 Jun 05 2022 08:28:48 %S A354559 1,2,5,13,28,79,204,549,1509,4231,12072,36426,112589 %N A354559 The number of terms of A354558 that are <= 10^n. %C A354559 The data is from De Koninck et al. (2013). %H A354559 Jean-Marie De Koninck, Nicolas Doyon, and Florian Luca, <a href="https://www.jeanmariedekoninck.mat.ulaval.ca/fileadmin/jmdk/Documents/Publications/2013_consecutive_integers_divisible_by_the_square_of_their_largest_prime_factors.pdf">Consecutive integers divisible by the square of their largest prime factors</a>, Journal of Combinatorics and Number Theory, Vol. 5, No. 2 (2013), pp. 81-93; <a href="https://www.researchgate.net/publication/268171058_Consecutive_integers_divisible_by_the_square_of_their_largest_prime_factors">Researchgate link</a>. %H A354559 Jean-Marie De Koninck and Matthieu Moineau, <a href="http://emis.muni.cz/journals/JIS/VOL21/DeKoninck/dek22.html">Consecutive Integers Divisible by a Power of their Largest Prime Factor</a>, J. Integer Seq., Vol. 21 (2018), Article 18.9.3. %H A354559 Régis de la Bretèche and Sary Drappeau, <a href="https://doi.org/10.4171/jems/951">Niveau de répartition des polynômes quadratiques et crible majorant pour les entiers friables</a>, Journal of the European Mathematical Society, Vol. 22, No. 5 (2020), pp. 1577-1624; <a href="https://arxiv.org/abs/1703.03197">arXiv preprint</a>, arXiv:1703.03197 [math.NT], 2017-2019. %e A354559 There is one term <= 10 in A354558, 8, therefore a(1) = 1. %e A354559 There are 2 terms <= 10^2 in A354558, 8 and 49, therefore a(2) = 2. %t A354559 q[n_] := FactorInteger[n][[-1, 2]] > 1; c[s_, n_] := Count[s, _?(# <= n &)]; m = 6; c[Select[Range[10^m], q[#] && q[# + 1] &], #] & /@ (10^Range[m]) %Y A354559 Cf. A354558. %K A354559 nonn,more %O A354559 1,2 %A A354559 _Amiram Eldar_, May 30 2022 %E A354559 a(12) from _Daniel Suteu_, Jun 03 2022 %E A354559 a(13) from _Daniel Suteu_, Jun 05 2022