This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354563 #14 Jun 04 2022 02:01:56 %S A354563 242,2400,6859,10647,47915,57121,344604,499999,830465,1012499,1431125, %T A354563 2098853,2825760,2829123,3930399,5560691,11859210,12323584,13137830, %U A354563 18253460,18279039,21093749,30664296,32279841,33999932,37218852,38640401,38740085,41485688,45222737 %N A354563 Numbers k such that P(k)^2 | k and P(k+1)^3 | (k+1), where P(k) = A006530(k) is the largest prime dividing k. %H A354563 Daniel Suteu, <a href="/A354563/b354563.txt">Table of n, a(n) for n = 1..9503</a> (terms <= 10^15) %H A354563 Jean-Marie De Koninck and Matthieu Moineau, <a href="http://emis.muni.cz/journals/JIS/VOL21/DeKoninck/dek22.html">Consecutive Integers Divisible by a Power of their Largest Prime Factor</a>, J. Integer Seq., Vol. 21 (2018), Article 18.9.3. %e A354563 242 = 2 * 11^2 is a term since P(242) = 11 and 11^2 | 242, 243 = 3^5, P(243) = 3, and 3^3 | 243. %t A354563 p[n_] := FactorInteger[n][[-1, 2]]; Select[Range[10^6], p[#] > 1 && p[# + 1] > 2 &] %o A354563 (Python) %o A354563 from sympy import factorint %o A354563 def c(n, e): f = factorint(n); return f[max(f)] >= e %o A354563 def ok(n): return n > 1 and c(n, 2) and c(n+1, 3) %o A354563 print([k for k in range(10**6) if ok(k)]) # _Michael S. Branicky_, May 30 2022 %Y A354563 Subsequence of A070003 and A354558. %Y A354563 A354562 is a subsequence. %Y A354563 Cf. A006530, A071178, A354564. %K A354563 nonn %O A354563 1,1 %A A354563 _Amiram Eldar_, May 30 2022