A354564 Numbers k such that P(k)^3 | k and P(k+1)^2 | (k+1), where P(k) = A006530(k) is the largest prime dividing k.
8, 6859, 12167, 101250, 328509, 453962, 482447, 536238, 598950, 5619712, 7170366, 11449008, 11667159, 11859210, 13428095, 15054335, 16541965, 18085704, 18253460, 19450850, 22173969, 23049600, 24039994, 29911714, 30959144, 32580250, 33229625, 44126385, 44321375
Offset: 1
Keywords
Examples
8 = 2^3 is a term since P(8) = 2 and 2^3 | 8, 9 = 3^2, P(9) = 3, and 3^2 | 9.
References
- Jean-Marie De Koninck and Nicolas Doyon, The Life of Primes in 37 Episodes, American Mathematical Society, 2021, p. 232.
Links
- Daniel Suteu, Table of n, a(n) for n = 1..9686 (terms <= 10^15)
- Jean-Marie De Koninck and Matthieu Moineau, Consecutive Integers Divisible by a Power of their Largest Prime Factor, J. Integer Seq., Vol. 21 (2018), Article 18.9.3.
- Eric Weisstein's World of Mathematics, Bouniakowsky Conjecture.
- Wikipedia, Bunyakovsky conjecture.
Crossrefs
Programs
-
Mathematica
p[n_] := FactorInteger[n][[-1, 2]]; Select[Range[10^6], p[#] > 2 && p[# + 1] > 1 &]
-
Python
from sympy import factorint def c(n, e): f = factorint(n); return f[max(f)] >= e def ok(n): return n > 1 and c(n, 3) and c(n+1, 2) print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, May 30 2022
Comments