A354572 Prime partial sums of the primes == 1 (mod 6).
7, 107, 211, 739, 1657, 2953, 4091, 20479, 23459, 33713, 35671, 46133, 60527, 63127, 77237, 80209, 86399, 106277, 127997, 139871, 178757, 183361, 197569, 238853, 255239, 272171, 353611, 367019, 394759, 416089, 460189, 475421, 625199, 652499, 808111, 860393, 903871, 925979, 959603, 1005217
Offset: 1
Keywords
Examples
a(3) = 211 is a term because 211 = A037349(7) = 7+13+19+31+37+43+61 and is prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
R:= NULL: count:= 0: t:= 0: for p from 1 by 6 while count < 100 do if isprime(p) then t:= t+p; if isprime(t) then R:= R, t; count:= count+1 fi fi od: R;
-
Mathematica
Select[Accumulate[Select[Prime[Range[1000]], Mod[#, 6] == 1 &]], PrimeQ] (* Amiram Eldar, Aug 18 2022 *)
Comments