This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354580 #24 Sep 11 2023 15:53:18 %S A354580 1,1,2,4,6,12,22,39,68,125,227,402,710,1280,2281,4040,7196,12780, %T A354580 22623,40136,71121,125863,222616,393305,695059,1227990,2167059, %U A354580 3823029,6743268,11889431,20955548,36920415,65030404,114519168,201612634,354849227 %N A354580 Number of rucksack compositions of n: every distinct partial run has a different sum. %C A354580 We define a partial run of a sequence to be any contiguous constant subsequence. The term rucksack is short for run-knapsack. %H A354580 Max Alekseyev, <a href="/A354580/b354580.txt">Table of n, a(n) for n = 0..65</a> %e A354580 The a(0) = 1 through a(5) = 12 compositions: %e A354580 () (1) (2) (3) (4) (5) %e A354580 (1,1) (1,2) (1,3) (1,4) %e A354580 (2,1) (2,2) (2,3) %e A354580 (1,1,1) (3,1) (3,2) %e A354580 (1,2,1) (4,1) %e A354580 (1,1,1,1) (1,1,3) %e A354580 (1,2,2) %e A354580 (1,3,1) %e A354580 (2,1,2) %e A354580 (2,2,1) %e A354580 (3,1,1) %e A354580 (1,1,1,1,1) %t A354580 Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n],UnsameQ@@Total/@Union@@Subsets/@Split[#]&]],{n,0,15}] %Y A354580 The knapsack version is A325676, ranked by A333223. %Y A354580 The non-partial version for partitions is A353837, ranked by A353838 (complement A353839). %Y A354580 The non-partial version is A353850, ranked by A353852. %Y A354580 The version for partitions is A353864, ranked by A353866. %Y A354580 The complete version for partitions is A353865, ranked by A353867. %Y A354580 These compositions are ranked by A354581. %Y A354580 A003242 counts anti-run compositions, ranked by A333489. %Y A354580 A011782 counts compositions. %Y A354580 A108917 counts knapsack partitions, ranked by A299702, strict A275972. %Y A354580 A238279 and A333755 count compositions by number of runs. %Y A354580 A275870 counts collapsible partitions, ranked by A300273. %Y A354580 A353836 counts partitions by number of distinct run-sums. %Y A354580 A353847 is the composition run-sum transformation. %Y A354580 A353851 counts compositions with all equal run-sums, ranked by A353848. %Y A354580 A353853-A353859 pertain to composition run-sum trajectory. %Y A354580 A353860 counts collapsible compositions, ranked by A354908. %Y A354580 Cf. A143823, A169942, A242882, A325545, A325680, A325682, A325685, A325687, A329739, A351017, A353849. %K A354580 nonn %O A354580 0,3 %A A354580 _Gus Wiseman_, Jun 13 2022 %E A354580 Terms a(16) onward from _Max Alekseyev_, Sep 10 2023