This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354583 #10 Jun 17 2022 22:12:44 %S A354583 12,24,36,40,48,60,63,72,80,84,96,108,112,120,126,132,144,156,160,168, %T A354583 180,189,192,200,204,216,224,228,240,252,264,276,280,288,300,312,315, %U A354583 320,324,325,336,348,351,352,360,372,378,384,396,400,408,420,432,440 %N A354583 Heinz numbers of non-rucksack partitions: not every prime-power divisor has a different sum of prime indices. %C A354583 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A354583 The term rucksack is short for run-knapsack. %e A354583 The terms together with their prime indices begin: %e A354583 12: {1,1,2} %e A354583 24: {1,1,1,2} %e A354583 36: {1,1,2,2} %e A354583 40: {1,1,1,3} %e A354583 48: {1,1,1,1,2} %e A354583 60: {1,1,2,3} %e A354583 63: {2,2,4} %e A354583 72: {1,1,1,2,2} %e A354583 80: {1,1,1,1,3} %e A354583 84: {1,1,2,4} %e A354583 96: {1,1,1,1,1,2} %e A354583 108: {1,1,2,2,2} %e A354583 112: {1,1,1,1,4} %e A354583 120: {1,1,1,2,3} %e A354583 126: {1,2,2,4} %e A354583 132: {1,1,2,5} %e A354583 144: {1,1,1,1,2,2} %e A354583 156: {1,1,2,6} %e A354583 160: {1,1,1,1,1,3} %e A354583 168: {1,1,1,2,4} %e A354583 For example, {2,2,2,3,3} does not have distinct run-sums because 2+2+2 = 3+3, so 675 is in the sequence. %t A354583 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A354583 Select[Range[100],!UnsameQ@@Total/@primeMS/@Select[Divisors[#],PrimePowerQ]&] %Y A354583 Knapsack partitions are counted by A108917, ranked by A299702. %Y A354583 Non-knapsack partitions are ranked by A299729. %Y A354583 The non-partial version is A353839, complement A353838 (counted by A353837). %Y A354583 The complement is A353866, counted by A353864. %Y A354583 The complete complement is A353867, counted by A353865. %Y A354583 The complement for compositions is counted by A354580. %Y A354583 A001222 counts prime factors, distinct A001221. %Y A354583 A056239 adds up prime indices, row sums of A112798 and A296150. %Y A354583 A073093 counts prime-power divisors. %Y A354583 A300273 ranks collapsible partitions, counted by A275870. %Y A354583 A304442 counts partitions with all equal run-sums, ranked by A353833. %Y A354583 A333223 ranks knapsack compositions, counted by A325676. %Y A354583 A353852 ranks compositions with all distinct run-sums, counted by A353850. %Y A354583 A353861 counts distinct partial run-sums of prime indices. %Y A354583 A354584 lists run-sums of prime indices, rows ranked by A353832. %Y A354583 Cf. A005811, A118914, A124010, A175413, A181819, A182857, A316413, A325862, A353834, A353835, A353836, A353931. %K A354583 nonn %O A354583 1,1 %A A354583 _Gus Wiseman_, Jun 15 2022