This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354584 #10 Jun 17 2022 22:12:49 %S A354584 1,2,2,3,1,2,4,3,4,1,3,5,2,2,6,1,4,2,3,4,7,1,4,8,2,3,2,4,1,5,9,3,2,6, %T A354584 1,6,6,2,4,10,1,2,3,11,5,2,5,1,7,3,4,2,4,12,1,8,2,6,3,3,13,1,2,4,14,2, %U A354584 5,4,3,1,9,15,4,2,8,1,6,2,7,2,6,16 %N A354584 Irregular triangle read by rows where row k lists the run-sums of the multiset (weakly increasing sequence) of prime indices of n. %C A354584 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A354584 Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). %e A354584 Triangle begins: %e A354584 . %e A354584 1 %e A354584 2 %e A354584 2 %e A354584 3 %e A354584 1 2 %e A354584 4 %e A354584 3 %e A354584 4 %e A354584 1 3 %e A354584 5 %e A354584 2 2 %e A354584 6 %e A354584 1 4 %e A354584 2 3 %e A354584 For example, the prime indices of 630 are {1,2,2,3,4}, so row 630 is (1,4,3,4). %t A354584 Table[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>PrimePi[p]*k],{n,30}] %Y A354584 Positions of first appearances are A308495 plus 1. %Y A354584 The version for compositions is A353932, ranked by A353847. %Y A354584 Classes: %Y A354584 - singleton rows: A000961 %Y A354584 - constant rows: A353833, nonprime A353834, counted by A304442 %Y A354584 - strict rows: A353838, counted by A353837, complement A353839 %Y A354584 Statistics: %Y A354584 - row lengths: A001221 %Y A354584 - row sums: A056239 %Y A354584 - row products: A304117 %Y A354584 - row ranks (as partitions): A353832 %Y A354584 - row image sizes: A353835 %Y A354584 - row maxima: A353862 %Y A354584 - row minima: A353931 %Y A354584 A001222 counts prime factors with multiplicity. %Y A354584 A112798 and A296150 list partitions by rank. %Y A354584 A124010 gives prime signature, sorted A118914. %Y A354584 A300273 ranks collapsible partitions, counted by A275870. %Y A354584 A353840-A353846 pertain to partition run-sum trajectory. %Y A354584 A353861 counts distinct sums of partial runs of prime indices. %Y A354584 A353866 ranks rucksack partitions, counted by A353864. %Y A354584 Cf. A000040, A002110, A027748, A071625, A073093, A181819, A238279/A333755, A353850, A353852, A353867. %K A354584 nonn,tabf %O A354584 1,2 %A A354584 _Gus Wiseman_, Jun 17 2022