This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354593 #11 Jun 01 2022 05:08:56 %S A354593 1,1,0,9,8,1,2,3,5,1,6,7,2,7,4,0,9,0,2,5,9,7,7,2,3,0,0,5,6,8,6,1,6,4, %T A354593 7,7,9,3,8,0,1,6,3,2,5,6,1,0,3,3,4,2,3,8,6,7,9,2,0,8,1,3,4,8,4,1,9,8, %U A354593 3,1,0,9,3,6,0,1,2,2,5,5,7,4,1,4,4,0,2,2,5,4,5,2,0,9,9,8,8,3,9,4,0,4,5,3,8 %N A354593 Decimal expansion of Sum_{k>=1} (1 - log(k)/k)^(3*k). %e A354593 1.109812351672740902597723005686164779380163256103342386792081348419831... %p A354593 Digits := 120: ser := sort(convert(series((1-log(n)/n)^(3*n), n = infinity, 300), polynom), n): s := evalf(sum(op(1, ser), n = 1..infinity) + sum(op(2, ser), n = 1..infinity), 120): for k from 3 to nops(ser) do serx := expand(op(k, ser)): for j to nops(serx) do s := s + evalf(sum(op(j, serx), n = 1..infinity), 120) end do: print(k, s) end do: %t A354593 NSum[(1 - Log[k]/k)^(3*k), {k, 1, Infinity}, WorkingPrecision -> 40, NSumTerms -> 1000] %o A354593 (PARI) sumpos(k=1, (1 - log(k)/k)^(3*k)) \\ _Michel Marcus_, Jun 01 2022 %Y A354593 Cf. A354450, A354592. %K A354593 nonn,cons %O A354593 1,4 %A A354593 _Vaclav Kotesovec_, Jun 01 2022