This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354609 #32 Jul 26 2022 07:27:14 %S A354609 561,2821,6601,8911,15841,29341,41041,75361,101101,115921,162401, %T A354609 172081,188461,252601,314821,340561,399001,410041,488881,512461, %U A354609 530881,552721,656601,658801,838201,852841,1024651,1152271,1193221,1461241,1615681,1857241,1909001,2100901,2113921,2433601,2455921,2704801,3057601 %N A354609 Carmichael numbers ending in 1. %H A354609 Amiram Eldar, <a href="/A354609/b354609.txt">Table of n, a(n) for n = 1..10000</a> %H A354609 <a href="/index/Ca#Carmichael">Index entries for sequences related to Carmichael numbers</a> %t A354609 Select[10*Range[0, 3*10^5] + 1, CompositeQ[#] && Divisible[# - 1, CarmichaelLambda[#]] &] (* _Amiram Eldar_, Jul 08 2022 *) %o A354609 (Python) %o A354609 from itertools import islice %o A354609 from sympy import nextprime, factorint %o A354609 def A354609_gen(): # generator of terms %o A354609 p, q = 3, 5 %o A354609 while True: %o A354609 for n in range(p+2+(-p-1)%10, q, 10): %o A354609 f = factorint(n) %o A354609 if max(f.values()) == 1 and not any((n-1) % (p-1) for p in f): %o A354609 yield n %o A354609 p, q = q, nextprime(q) %o A354609 A354609_list = list(islice(A354609_gen(),30)) # _Chai Wah Wu_, Jul 24 2022 %Y A354609 Intersection of A002997 and A017281. %Y A354609 Cf. A352970, A355305, A355307, A355309. %K A354609 nonn,base %O A354609 1,1 %A A354609 _Omar E. Pol_, Jul 08 2022