cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354612 Expansion of e.g.f. exp(f(x) - 1) where f(x) = (1 + x)^x = e.g.f. for A007113.

This page as a plain text file.
%I A354612 #12 Jul 09 2022 11:05:24
%S A354612 1,0,2,-3,32,-150,1404,-11340,120448,-1319976,16600320,-223664760,
%T A354612 3300331704,-52223268240,887583503520,-16071609481200,309263446333440,
%U A354612 -6296705309543040,135262191966465600,-3056359409652695040,72462969268541596800
%N A354612 Expansion of e.g.f. exp(f(x) - 1) where f(x) = (1 + x)^x = e.g.f. for A007113.
%F A354612 a(0) = 1; a(n) = Sum_{k=1..n} A007113(k) * binomial(n-1,k-1) * a(n-k).
%o A354612 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((1+x)^x-1)))
%o A354612 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, j!*sum(k=0, j\2, stirling(j-k, k, 1)/(j-k)!)*binomial(i-1, j-1)*v[i-j+1])); v;
%Y A354612 Cf. A007113, A202152, A354613.
%K A354612 sign
%O A354612 0,3
%A A354612 _Seiichi Manyama_, Jul 08 2022