This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354621 #21 Jan 04 2023 17:08:52 %S A354621 1,2,5,19,85,586,3583,28568,195449,1666786,18757980,161386953, %T A354621 1897428757,20910643255,186584844271,1896239913403,23753305611756, %U A354621 322385257985845,3291722491175736,43011227141438328,517673545204963277,5056620552149902641,65366993167319822971 %N A354621 Number of n-tuples (p_1, p_2, ..., p_n) of positive integers such that p_{i-1} <= p_i <= prime(i). %C A354621 The number of n-tuples of primes with p_{i-1} <= p_i <= prime(i) give A000108. %H A354621 Alois P. Heinz, <a href="/A354621/b354621.txt">Table of n, a(n) for n = 0..754</a> %F A354621 a(n) = Sum_{j=0..n-1} a(j)*(-1)^(n+1-j)*binomial(prime(j+1),n-j) with a(0) = 1. %F A354621 Sum_{n>=0} a(n)*x^n * (1-x)^prime(n+1) = 1. %e A354621 a(0) = 1: ( ). %e A354621 a(1) = 2: (1), (2). %e A354621 a(2) = 5: (1,1), (1,2), (1,3), (2,2), (2,3). %p A354621 b:= proc(n, i) option remember; `if`(n=0, 1, %p A354621 add(b(n-1, j), j=1..min(i, ithprime(n)))) %p A354621 end: %p A354621 a:= n-> b(n, infinity): %p A354621 seq(a(n), n=0..23); %p A354621 # second Maple program: %p A354621 a:= proc(n) option remember; `if`(n=0, 1, -add(a(j)* %p A354621 (-1)^(n-j)*binomial(ithprime(j+1), n-j), j=0..n-1)) %p A354621 end: %p A354621 seq(a(n), n=0..23); %t A354621 a[n_] := a[n] = If[n == 0, 1, -Sum[a[j]*(-1)^(n - j)* Binomial[Prime[j + 1], n - j], {j, 0, n - 1}]]; %t A354621 Table[a[n], {n, 0, 23}] (* _Jean-François Alcover_, Dec 28 2022, after second Maple program *) %Y A354621 Cf. A000040, A000108, A325057. %K A354621 nonn %O A354621 0,2 %A A354621 _Alois P. Heinz_, Jul 08 2022