This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354665 #25 Dec 27 2022 03:26:23 %S A354665 1,1,0,1,0,1,1,1,2,0,1,2,4,0,1,1,3,6,3,3,0,1,4,9,8,9,0,1,1,5,13,17,18, %T A354665 6,4,0,1,6,18,30,36,20,16,0,1,1,7,24,48,66,55,40,10,5,0,1,8,31,72,114, %U A354665 120,100,40,25,0,1,1,9,39,103,186 %N A354665 Triangle read by rows, T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + T(n-2,k-2) + T(n-3,k-1) - T(n-3,k-3) + delta(n,0)*delta(k,0) - delta(n,1)*delta(k,1), T(n<k,k) = T(n,k<0) = 0. %C A354665 This is the m=2, t=3 member of a two-parameter family of triangles such that T(n,k) is the number of tilings of an (n+(t-1)*k) X 1 board using k (1,m-1;t)-combs and n-k unit square tiles. A (1,g;t)-comb is composed of a line of t unit square tiles separated from each other by gaps of width g. %C A354665 T(2*j+r-2*k,k) is the coefficient of x^k in (f(j,x))^(2-r)*(f(j+1,x))^r for r=0,1, where f(n,x) is a Narayana's cows polynomial defined by f(n,x)=f(n-1,x)+x*f(n-3,x)+delta(n,0) where f(n<0,x)=0. %C A354665 T(n+4-2*k,k) is the number of subsets of {1,2,...,n} of size k such that no two elements in a subset differ by 2 or 4. %H A354665 Michael A. Allen, <a href="https://arxiv.org/abs/2209.01377">On a Two-Parameter Family of Generalizations of Pascal's Triangle</a>, arXiv:2209.01377 [math.CO], 2022. %H A354665 Michael A. Allen, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL25/Allen2/allen8.html">On A Two-Parameter Family of Generalizations of Pascal's Triangle</a>, J. Int. Seq. 25 (2022) Article 22.9.8. %F A354665 T(n,0) = 1. %F A354665 T(n,n) = delta(n mod 2,0). %F A354665 T(n,1) = n-2 for n>1. %F A354665 T(2*j-r,2*j-1) = 0 for j>0, r=0,1. %F A354665 T(2*(j-1)+p,2*(j-1)) = j^p for j>0 and p=0,1,2. %F A354665 T(2*(j-1)+3,2*(j-1)) = j^2*(j+1)/2 for j>0. %F A354665 T(2*j+p,2*j-p) = C(j+1,2)^p for j>0 and p=0,1,2. %F A354665 G.f. of row sums: (1-x)/(1-2*x). %F A354665 G.f. of sums of T(n-2*k,k) over k: (1-x^3)/((1-x-x^3)*(1+x^4-x^6)). %F A354665 T(n,k) = T(n-1,k) + T(n-1,k-1) for n>=2*k+1 if k>=0. %e A354665 Triangle begins: %e A354665 1; %e A354665 1, 0; %e A354665 1, 0, 1; %e A354665 1, 1, 2, 0; %e A354665 1, 2, 4, 0, 1; %e A354665 1, 3, 6, 3, 3, 0; %e A354665 1, 4, 9, 8, 9, 0, 1; %e A354665 1, 5, 13, 17, 18, 6, 4, 0; %e A354665 1, 6, 18, 30, 36, 20, 16, 0, 1; %e A354665 1, 7, 24, 48, 66, 55, 40, 10, 5, 0; %e A354665 1, 8, 31, 72, 114, 120, 100, 40, 25, 0, 1; %e A354665 1, 9, 39, 103, 186, 234, 221, 135, 75, 15, 6, 0; %e A354665 ... %t A354665 T[n_, k_]:=If[k<0 || n<k, 0, T[n-1, k] + T[n-1, k-1] - T[n-2, k-1] + T[n-2, k-2] + T[n-3, k-1] - T[n-3, k-3] + KroneckerDelta[n, k, 0] - KroneckerDelta[n, k, 1]]; Table[T[n,k], {n, 0, 11}, {k, 0, n}]//Flatten %Y A354665 Row sums are A011782. %Y A354665 Sums over k of T(n-2*k,k) are A224809. %Y A354665 Other members of the family of triangles: A007318 (m=1,t=2), A059259 (m=2,t=2), A350110 (m=3,t=2), A350111 (m=4,t=2), A350112 (m=5,t=2), A354666 (m=2,t=4), A354667 (m=2,t=5), A354668 (m=3,t=3). %Y A354665 Other triangles related to tiling using combs: A059259, A123521, A157897, A335964. %K A354665 easy,nonn,tabl %O A354665 0,9 %A A354665 _Michael A. Allen_, Jun 04 2022