A354666
Triangle read by rows, T(n,k) = T(n-1,k) + T(n-2,k-1) + 2*T(n-2,k-2) - T(n-3,k-1) - T(n-3,k-2) + T(n-4,k-1) + T(n-4,k-2) - T(n-4,k-3) - T(n-4,k-4) + delta(n,0)*delta(k,0) - delta(n,2)*(delta(k,1) + delta(k,2)), T(n
1, 1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 1, 4, 0, 1, 1, 2, 6, 0, 3, 0, 1, 3, 9, 4, 9, 0, 1, 1, 4, 12, 10, 18, 0, 4, 0, 1, 5, 16, 21, 36, 10, 16, 0, 1, 1, 6, 21, 36, 60, 30, 40, 0, 5, 0, 1, 7, 27, 57, 100, 81, 100, 20, 25, 0, 1, 1, 8, 34, 84, 158, 168
Offset: 0
Examples
Triangle begins: 1; 1, 0; 1, 0, 1; 1, 0, 2, 0; 1, 1, 4, 0, 1; 1, 2, 6, 0, 3, 0; 1, 3, 9, 4, 9, 0, 1; 1, 4, 12, 10, 18, 0, 4, 0; 1, 5, 16, 21, 36, 10, 16, 0, 1; 1, 6, 21, 36, 60, 30, 40, 0, 5, 0; 1, 7, 27, 57, 100, 81, 100, 20, 25, 0, 1; 1, 8, 34, 84, 158, 168, 200, 70, 75, 0, 6, 0; 1, 9, 42, 118, 243, 322, 400, 231, 225, 35, 36, 0, 1; ...
Links
- Michael A. Allen, On a Two-Parameter Family of Generalizations of Pascal's Triangle, arXiv:2209.01377 [math.CO], 2022.
- Michael A. Allen, On A Two-Parameter Family of Generalizations of Pascal's Triangle, J. Int. Seq. 25 (2022) Article 22.9.8.
Crossrefs
Programs
-
Mathematica
T[n_,k_]:=If[k<0 || n
Formula
T(n,0) = 1.
T(n,n) = delta(n mod 2,0).
T(n,1) = n-3 for n>2.
T(2*j-r,2*j-1) = 0 for j>0, r=-1,0,1.
T(2*(j-1)+p,2*(j-1)) = j^p for j>0 and p=0,1,2.
T(2*j+p,2*(j-1)) = j^2*((j+1)/2)^p for j>0 and p=1,2.
T(2*j+3,2*(j-1)) = (j*(j+1))^2*(j+2)/12 for j>0.
T(2*(j+p),2*j-p) = C(j+2,3)^p for j>0 and p=0,1,2.
G.f. of row sums: (1-2*x^2)/(1-x-3*x^2+2*x^3).
G.f. of sums of T(n-3*k,k) over k: (1-x^5-x^8)/(1-x-x^5+x^6-x^7-2*x^8+x^9-x^10+x^13+x^16).
T(n,k) = T(n-1,k) + T(n-1,k-1) for n>=3*k+1 if k>=0.
Comments