cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354680 Terms of A354169 that are not powers of 2, in order of appearance.

This page as a plain text file.
%I A354680 #53 Nov 29 2023 13:08:01
%S A354680 0,3,12,17,34,68,136,768,1025,18,2080,12288,16388,72,32896,196608,
%T A354680 262400,524800,1048577,2098176,4194306,48,8390656,50331648,67112960,
%U A354680 134225920,268435460,536887296,1073741832,192,2147516416,12884901888,17179934720,34359869440
%N A354680 Terms of A354169 that are not powers of 2, in order of appearance.
%C A354680 Apart from the initial 0, all terms have Hamming weight 2. See De Vlieger et al. (2022). - _N. J. A. Sloane_, Aug 29 2022
%H A354680 Rémy Sigrist, <a href="/A354680/b354680.txt">Table of n, a(n) for n = 1..3320</a>
%H A354680 Michael De Vlieger, Thomas Scheuerle, Rémy Sigrist, N. J. A. Sloane, and Walter Trump, <a href="http://arxiv.org/abs/2209.04108">The Binary Two-Up Sequence</a>, arXiv:2209.04108 [math.CO], Sep 11 2022.
%H A354680 Rémy Sigrist, <a href="/A354680/a354680.gp.txt">PARI program</a>
%H A354680 Rémy Sigrist, <a href="/A354680/a354680_1.gp.txt">PARI program (optimized version)</a>
%F A354680 A000120(A354169(a(n))) <> 1.
%e A354680 The initial terms of A354169 are:
%e A354680   0, 1, 2, 4, 8, 3, 16, 32, 64, 12, 128, 256.
%e A354680 The initial terms of this sequence are therefore: 0,             3,             12.
%e A354680 and the initial terms of A354798 are
%e A354680   0,             5,              9.
%o A354680 (PARI) See Links section.
%o A354680 (Python 3.10+)
%o A354680 from itertools import count, islice
%o A354680 from collections import deque
%o A354680 from functools import reduce
%o A354680 from operator import or_
%o A354680 def A354680_gen(): # generator of terms
%o A354680     aset, aqueue, b, f = {0,1,2}, deque([2]), 2, False
%o A354680     yield 0
%o A354680     while True:
%o A354680         for k in count(1):
%o A354680             m, j, j2, r, s = 0, 0, 1, b, k
%o A354680             while r > 0:
%o A354680                 r, q = divmod(r,2)
%o A354680                 if not q:
%o A354680                     s, y = divmod(s,2)
%o A354680                     m += y*j2
%o A354680                 j += 1
%o A354680                 j2 *= 2
%o A354680             if s > 0:
%o A354680                 m += s*2**b.bit_length()
%o A354680             if m not in aset:
%o A354680                 if m.bit_count() > 1:
%o A354680                     yield m
%o A354680                 aset.add(m)
%o A354680                 aqueue.append(m)
%o A354680                 if f: aqueue.popleft()
%o A354680                 b = reduce(or_,aqueue)
%o A354680                 f = not f
%o A354680                 break
%o A354680 A354680_list = list(islice(A354680_gen(),40)) # _Chai Wah Wu_, Jun 06 2022
%Y A354680 Cf. A000120, A057716, A354169, A354798 (corresponding indices).
%Y A354680 See also A354767.
%K A354680 nonn,base
%O A354680 1,2
%A A354680 _Rémy Sigrist_ and _N. J. A. Sloane_, Jun 06 2022