This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354682 #12 Nov 03 2024 10:40:37 %S A354682 6,15,667,1517,9797,123197,233273,522713,627239,826277,974153,988027, %T A354682 1127843,1162003,1209991,2624399,2637367,3493157,4235339,4384811, %U A354682 4460543,6827753,7784099,10916407,11370383,17065157,25009997,26347493,29964667,32330587,32387477,33419957,34809991,35354867,37088099 %N A354682 Interprimes that are products of two successive primes. %C A354682 Numbers that are both the average of two successive primes and the product of two successive primes. %C A354682 Includes p*(p+2) where p, p+2,p^2+2*p-6 and p^2+2*p+6 are all primes but p^2+2*p-2, p^2+2*p-4, p^2+2*p+2 and p^2+2*p+4 are composite. The Generalized Bunyakovsky Conjecture implies there are infinitely many such terms. %H A354682 Robert Israel, <a href="/A354682/b354682.txt">Table of n, a(n) for n = 1..10000</a> %e A354682 a(3) = 667 is a term because 667 = (661 + 673)/2 = 23*29 where 661 and 673 are successive primes and 23 and 29 are successive primes. %p A354682 R:= NULL: count:= 0: %p A354682 q:= 2: %p A354682 while count < 50 do %p A354682 p:= q; q:= nextprime(q); %p A354682 r:= p*q; %p A354682 if prevprime(r)+nextprime(r)=2*r then %p A354682 R:= R, r; count:= count+1; %p A354682 fi %p A354682 od: %p A354682 R; %t A354682 Select[Table[Prime[n]*Prime[n + 1], {n, 1, 800}], Plus @@ NextPrime[#, {-1, 1}] == 2*# &] (* _Amiram Eldar_, Jun 03 2022 *) %t A354682 Select[Times@@@Partition[Prime[Range[1000]],2,1],(NextPrime[#]+NextPrime[#,-1])/2==#&] (* _Harvey P. Dale_, Nov 03 2024 *) %Y A354682 Intersection of A006094 and A024675. Cf. A174955. %K A354682 nonn %O A354682 1,1 %A A354682 _J. M. Bergot_ and _Robert Israel_, Jun 03 2022