cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354696 G.f. A(x) satisfies: A(x) = 1 + x * A(x^4/(1 - x)^4) / (1 - x)^4.

This page as a plain text file.
%I A354696 #8 Jun 03 2022 12:59:36
%S A354696 1,1,4,10,20,36,64,120,240,499,1060,2314,5252,12360,29632,70992,
%T A354696 168096,392465,905940,2075314,4730052,10735516,24258688,54553000,
%U A354696 122076240,271914499,603183508,1333268098,2937818900,6455143760,14146816640,30929336736,67473335104
%N A354696 G.f. A(x) satisfies: A(x) = 1 + x * A(x^4/(1 - x)^4) / (1 - x)^4.
%F A354696 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} binomial(n+2,4*k+3) * a(k).
%o A354696 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\4, binomial(i+2, 4*j+3)*v[j+1])); v;
%Y A354696 Cf. A119685, A354695.
%Y A354696 Cf. A351817, A352066.
%K A354696 nonn
%O A354696 0,3
%A A354696 _Seiichi Manyama_, Jun 03 2022