This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354699 #8 Dec 19 2024 11:53:22 %S A354699 0,2,1,4,5,3,5,6,7,4,7,8,8,9,6,8,9,10,11,12,7,10,11,12,13,14,15,9,11, %T A354699 12,13,13,15,16,17,10,13,14,14,16,17,18,19,20,12,14,15,16,17,18,18,20, %U A354699 20,22,13,16,17,18,19,20,21,22,23,24,25,15,17,18,19,20,21,22,23,24,25,26,27,16 %N A354699 T(w,h) is the number of non-congruent triangles with distinct side lengths whose vertices with integer coordinates (x_i, y_i) all lie on the perimeter of a rectangle of width w and height h, with max(x_i)-min(x_i) = w and max(y_i)-min(y_i) = h. %C A354699 T(w,h) is a triangle, read by rows. %H A354699 Hugo Pfoertner, <a href="/A354699/a354699.gp.txt">PARI program</a> %e A354699 The triangle begins: %e A354699 0; %e A354699 2, 1; %e A354699 4, 5, 3; %e A354699 5, 6, 7, 4; %e A354699 7, 8, 8, 9, 6; %e A354699 8, 9, 10, 11, 12, 7; %e A354699 10, 11, 12, 13, 14, 15, 9; %e A354699 11, 12, 13, 13, 15, 16, 17, 10; %e A354699 13, 14, 14, 16, 17, 18, 19, 20, 12; %e A354699 14, 15, 16, 17, 18, 18, 20, 20, 22, 13 %e A354699 . %e A354699 T(2,1) = 2: %e A354699 1 | . . C Squared sides s^2: %e A354699 0 | A B . AB = 1, BC = 2, CA = 5 %e A354699 y /------ %e A354699 x 0 1 2 %e A354699 1 | . . C %e A354699 0 | A . B AB = 4, BC = 1, CA = 5 %e A354699 y /------ %e A354699 x 0 1 2 %e A354699 . %e A354699 T(2,2) = 1: %e A354699 2 | . . C %e A354699 1 | . . . Squared sides s^2: %e A354699 0 | A B . AB = 1, BC = 5, CA = 8 %e A354699 y /------ %e A354699 x 0 1 2 %e A354699 . %e A354699 T(3,1) = 4: %e A354699 1 | . . . C 1 | . . . C 1 | . . . C 1 | . C . . %e A354699 0 | A B . . 0 | A . B . 0 | A . . B 0 | A . . B %e A354699 y /-------- y /-------- y /-------- y /-------- %e A354699 x 0 1 2 3 x 0 1 2 3 x 0 1 2 3 x 0 1 2 3 %e A354699 s^2: {1,5,10} {2,4,10} {1,9,10} {2,5,9} %e A354699 . %e A354699 T(3,2) = 5: %e A354699 2 | . . . C 2 | . . . C 2 | . . . C 2 | . . . C 2 | . C . . %e A354699 1 | . . . . 1 | . . . . 1 | . . . . 1 | . . . B 1 | . . . . %e A354699 0 | A B . . 0 | A . B . 0 | A . . B 0 | A . . . 0 | A . . B %e A354699 y /-------- y /-------- y /-------- y /-------- y /-------- %e A354699 x 0 1 2 3 x 0 1 2 3 x 0 1 2 3 x 0 1 2 3 x 0 1 2 3 %e A354699 s^2: {1,8,13} {4,5,13} {4,9,13} {1,10,13} {5,8,9} %e A354699 . %e A354699 T(3,3) = 3: %e A354699 3 | . . . C 3 | . . . C 3 | . C . . %e A354699 2 | . . . . 2 | . . . . 2 | . . . . %e A354699 1 | . . . . 1 | . . . . 1 | . . . . %e A354699 0 | A B . . 0 | A . B . 0 | A . . B %e A354699 y /-------- y /-------- y /-------- %e A354699 x 0 1 2 3 x 0 1 2 3 x 0 1 2 3 %e A354699 s^2: {1,13,18} {4,10,18} {9,10,13} %o A354699 (PARI) \\ See link. %Y A354699 Cf. A354700. %K A354699 nonn,tabl %O A354699 1,2 %A A354699 _Hugo Pfoertner_, Jun 07 2022