cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354709 Decimal expansion of Sum_{p prime} 3*(2p-1)*log(p)/(p^3 + p^2 - 3p + 1).

Original entry on oeis.org

2, 5, 2, 9, 0, 6, 6, 1, 7, 3, 5, 8, 0, 9, 2, 9, 9, 2, 9, 2, 5, 9, 5, 8, 7, 1, 2, 9, 3, 0, 1, 8, 9, 4, 5, 9, 2, 3, 0, 0, 0, 9, 2, 2, 3, 9, 9, 4, 4, 3, 9, 9, 7, 6, 1, 1, 8, 8, 9, 9, 2, 5, 6, 2, 7, 0, 1, 3, 5, 7, 8, 0, 0, 6, 6, 2, 8, 6, 4, 7, 7, 4, 9, 6, 1, 5, 1, 7, 2, 2, 4, 6, 7, 7, 6, 3, 3, 2, 0, 4, 4, 3, 2, 6, 5
Offset: 1

Views

Author

David Nguyen, Jun 03 2022

Keywords

Comments

Also logarithmic derivative of A(s,w) at (0,0), where A(s,w) = Product_{p prime} (1 - (1 - (p*(1 - p^(-1-s))^3)/(-1+p))*(1 - (p*(1 - p^(-1-w))^3)/(-1+p))), with A(0,0) = A256392.

Examples

			2.52906617358092992925958712930189459230009223994439976118899256270135780066...
		

Crossrefs

Cf. A256392.

Programs

  • Mathematica
    Block[{$MaxExtraPrecision = 1000},
    Do[CC = Join[{0},
        Series[(3 (-1 + 2 p))/(1 - 3 p + p^2 + p^3) //. p -> 1/x, {x, 0,
           t}][[3]]];
      Print[N[-Sum[
            CC[[k]]*(PrimeZetaP'[k] + Log[2]/2^k), {k, 1, Length[CC]}] + (
          3 (-1 + 2 p) Log[p])/(1 - 3 p + p^2 + p^3) //. p -> 2, 75]], {t,
        1000, 1500, 100}]]
    ratfun = 3*(2*p - 1)/(p^3 + p^2 - 3*p + 1); zetas = 0; ratab = Table[konfun = Simplify[ratfun + c/(p^power - 1)] // Together; coefs = CoefficientList[Numerator[konfun], p]; sol = Solve[Last[coefs] == 0, c][[1]]; zetas = zetas + c*Zeta'[power]/Zeta[power] /. sol; ratfun = konfun /. sol, {power, 2, 20}]; Do[Print[N[Sum[Log[p]*ratfun /. p -> Prime[k], {k, 1, m}] + zetas, 120]], {m, 2000, 20000, 2000}] (* Vaclav Kotesovec, Jun 04 2022 *)

Extensions

More digits from Vaclav Kotesovec, Jun 04 2022