This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354724 #24 Jun 08 2022 03:22:09 %S A354724 1,3,5,17,25,39,57,69,145,201,257,265,289,291,323,393,579,1075,1083, %T A354724 2307,2645,2875,4205,4503,5555,5593,7955,8815,9399,9401,9519,11033, %U A354724 11155,11407,12297,12455,12711,12909,13205,13281,13611,13737,14001,14915,15879,16629 %N A354724 Numbers k whose ordered binary weights (A000120) of their divisors are the numbers 1 to A000005(k). %C A354724 The subsequence of terms whose divisors have binary weights in order is A255401. %C A354724 All terms are odd. Proof: All binary weights must be distinct but the binary weights of k and 2*k are equal. A contradiction. - _David A. Corneth_, Jun 04 2022 %H A354724 Amiram Eldar, <a href="/A354724/b354724.txt">Table of n, a(n) for n = 1..2475</a> %e A354724 3 is a term since its divisors, 1 and 3, have binary weights 1 and 2, respectively. %e A354724 69 is a term since its divisors, 1, 3, 23 and 69, have binary weights 1, 2, 4 and 3, respectively. %t A354724 bw[n_] := DigitCount[n, 2, 1]; q[n_] := Module[{d = Divisors[n]}, Union[bw /@ d] == Range[Length[d]]]; Select[Range[1, 10^4, 2], q] %o A354724 (Python) %o A354724 from sympy import divisors %o A354724 def binwt(n): return bin(n).count("1") %o A354724 def ok(n): %o A354724 if n%2 == 0: return False %o A354724 binwts, divs = set(), 0 %o A354724 for d in divisors(n, generator=True): %o A354724 b = binwt(d) %o A354724 if b in binwts: return False %o A354724 binwts.add(b) %o A354724 divs += 1 %o A354724 return binwts == set(range(1, divs+1)) %o A354724 print([k for k in range(20000) if ok(k)]) # _Michael S. Branicky_, Jun 04 2022 %Y A354724 Cf. A000005, A000120, A354722. %Y A354724 A255401 is a subsequence. %K A354724 nonn,base %O A354724 1,2 %A A354724 _Amiram Eldar_, Jun 04 2022