This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354744 #11 Jun 08 2022 10:13:05 %S A354744 2,3,7,59,29,157,907,2351,5179,2089,60881279,147692870693,15293983, %T A354744 834172688773,894476586329191,1275290173878841,259268969935081, %U A354744 1027994118842320951 %N A354744 Last term of arithmetic progression of exactly n primes with difference A033188(n) and first term = A354743(n). %C A354744 Equivalently: Let i, i+d, i+2d, ..., i+(n-1)d be an arithmetic progression of exactly n primes; choose the first one which minimizes the common difference d; then a(n) = i+(n-1)d. %C A354744 The word "exactly" requires both i-d and i+n*d to be nonprime. %C A354744 Without "exactly", we get A113872. %C A354744 The primes in these arithmetic progressions need not be consecutive. %C A354744 a(n) != 113872(n) for n = 4, 8, 9, 19 because in these particular cases A113872(n) + A033188(n) is prime. %C A354744 a(8) = 2351 and a(9) = 5179, found by _Michael S. Branicky_ come from A354376. %C A354744 a(19) > A113872(19) = 1424014323186726053 is not known, it is the last term of the arithmetic progression of exactly 19 primes with a common difference d = 9699690 and first term = A354743(19); then a(20) = 1424014323196425743 and a(21) = 28112131522925191409. %D A354744 Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section A5, Arithmetic progressions of primes, pp. 25-28. %H A354744 J. K. Andersen, <a href="http://primerecords.dk/aprecords.htm">Primes in Arithmetic Progression Records</a>. %H A354744 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeArithmeticProgression.html">Prime Arithmetic Progression</a>. %H A354744 <a href="/index/Pri#primes_AP">Index entries for sequences related to primes in arithmetic progressions</a>. %e A354744 The first few corresponding arithmetic progressions are: %e A354744 n = 1 and d = 0: (2); %e A354744 n = 2 and d = 1: (2, 3); %e A354744 n = 3 and d = 2: (3, 5, 7); %e A354744 n = 4 and d = 6: (41, 47, 53, 59); %e A354744 n = 5 and d = 6: (5, 11, 17, 23, 29); %e A354744 n = 6 and d = 30: (7, 37, 67, 97, 127, 157); %e A354744 n = 7 and d = 150: (7, 157, 307, 457, 607, 757, 907); %e A354744 n = 8 and d = 210: (881, 1091,1301, 1511, 1721, 1931, 2141, 2351). %Y A354744 Cf. A033188, A033189, A113872, A354377, A354743. %K A354744 nonn,more %O A354744 1,1 %A A354744 _Bernard Schott_, Jun 05 2022