This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354745 #27 Jun 09 2022 02:25:38 %S A354745 13,15,17,24,26,31,37,39,42,51,58,62,71,73,79,85,93,97,113,117,131, %T A354745 155,171,177,178,187,199,226,262,288,311,337,339,355,373,393,515,535, %U A354745 551,553,558,585,622,711,717,718,733,771,781,817,828,855,871,882,899,919,933,989,991,998 %N A354745 Non-repdigit numbers k such that every permutation of the digits of k has the same number of divisors. %C A354745 After a(93) = 84444, no further terms < 10^18. - _Michael S. Branicky_, Jun 08 2022 %e A354745 871 is a term because d(871) = d(817) = d(178) = d(187) = d(718) = d(781) = 4, where d(n) is the number of divisors of n. %t A354745 Select[Range[10000],CountDistinct[DivisorSigma[0,FromDigits /@ Permutations[IntegerDigits[#]]]]==1&&CountDistinct[IntegerDigits[#]]>1&] %o A354745 (Python) %o A354745 from sympy import divisor_count %o A354745 from itertools import permutations %o A354745 def ok(n): %o A354745 s, d = str(n), divisor_count(n) %o A354745 if len(set(s)) == 1: return False %o A354745 return all(d==divisor_count(int("".join(p))) for p in permutations(s)) %o A354745 print([k for k in range(5500) if ok(k)]) # _Michael S. Branicky_, Jun 05 2022 %Y A354745 Cf. A000005, A003459, A067012, A062895, A350867, A354746. %K A354745 nonn,base %O A354745 1,1 %A A354745 _Metin Sariyar_, Jun 05 2022