This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354751 #7 Jun 06 2022 09:24:11 %S A354751 1,1,-2,14,-152,2264,-42832,982512,-26484096,820207488,-28692711168, %T A354751 1118821622016,-48112717347840,2261868010650624,-115400220781209600, %U A354751 6350152838136428544,-374874781697133871104,23632196147497381625856,-1584445791263626895228928 %N A354751 Expansion of e.g.f. 1 / (1 - log(1 + 4*x) / 4). %F A354751 a(n) = Sum_{k=0..n} Stirling1(n,k) * k! * 4^(n-k). %F A354751 a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (k-1)! * (-4)^(k-1) * a(n-k). %t A354751 nmax = 18; CoefficientList[Series[1/(1 - Log[1 + 4 x]/4), {x, 0, nmax}], x] Range[0, nmax]! %t A354751 Table[Sum[StirlingS1[n, k] k! 4^(n - k), {k, 0, n}], {n, 0, 18}] %o A354751 (PARI) my(x='x + O('x^20)); Vec(serlaplace(1/(1-log(1+4*x)/4))) \\ _Michel Marcus_, Jun 06 2022 %Y A354751 Cf. A006252, A326324, A352071, A354147, A354237, A354264, A354750. %K A354751 sign %O A354751 0,3 %A A354751 _Ilya Gutkovskiy_, Jun 06 2022