cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354773 For terms of A354169 that are the sum of two distinct powers of 2, the exponent of the smaller power of 2.

This page as a plain text file.
%I A354773 #37 Nov 29 2023 13:08:09
%S A354773 0,2,0,1,2,3,8,0,1,5,12,2,3,7,16,8,9,0,10,1,4,11,24,12,13,2,14,3,6,15,
%T A354773 32,16,17,8,18,9,19,0,20,10,21,1,22,4,5,11,48,24,25,12,26,13,27,2,28,
%U A354773 14,29,3,30,6,7,15,64,32,33,16,34,17,35,8,36,18,37,9,38,19,39,0,40,20,41,10,42,21,43,1,44,22,45,4,46
%N A354773 For terms of A354169 that are the sum of two distinct powers of 2, the exponent of the smaller power of 2.
%H A354773 Rémy Sigrist, <a href="/A354773/b354773.txt">Table of n, a(n) for n = 1..10000</a>
%H A354773 Michael De Vlieger, Thomas Scheuerle, Rémy Sigrist, N. J. A. Sloane, and Walter Trump, <a href="http://arxiv.org/abs/2209.04108">The Binary Two-Up Sequence</a>, arXiv:2209.04108 [math.CO], Sep 11 2022.
%H A354773 Rémy Sigrist, <a href="/A354773/a354773.txt">C++ program</a>
%F A354773 Conjecture from _N. J. A. Sloane_, Jun 29 2022: (Start)
%F A354773 The following is a conjectured recurrence for a(n). Basically a(n) = a(n/2-1) if n is even, and a(n) = (n+1)/2 if n is odd, except that there are four types of n which have a different formula, and there are 19 exceptional values for small n. Note that a(n) does not depend on earlier values when n is odd.
%F A354773 Here is the formula, which agrees with the first 10000 terms.
%F A354773 There are exceptional values as far out as n=61, so we take care of them first.
%F A354773 Initial conditons:
%F A354773 If n is on the list
%F A354773 [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 21, 22, 29, 30, 45, 61]
%F A354773 then a(n) is given by the n-th term of the following list:
%F A354773   [0, 2, 0, 1, 2, 3, 8, 0, 1, 5, 12, 2, 3, 7, 16, 8, 9, 0, 10,
%F A354773    1, 4, 11, 24, 12, 13, 2, 14, 3, 6, 15, 32, 16, 17, 8, 18, 9,
%F A354773   19, 0, 20, 10, 21, 1, 22, 4, 5, 11, 48, 24, 25, 12, 26, 13,
%F A354773   27, 2, 28, 14, 29, 3, 30, 6, 7].
%F A354773 Otherwise, if n is even, a(n) = a(n/2-1).
%F A354773 Otherwise n is odd and is not one of the exceptions.
%F A354773   (I) If n = 3*2^k-3, k >= 5, then a(n) = (n-1)/4.
%F A354773   (II) If n = 2^k-3, k >= 4 then a(n) = (n-1)/4.
%F A354773   (III) If n = 3*2^k-1, k >= 2 then a(n) = n+1.
%F A354773   (IV) If n = 2^k-1, k >= 3 then a(n) = n+1.
%F A354773   (V) Otherwise a(n) = (n+1)/2.
%F A354773 (End)
%F A354773 The conjecture is now known to be true. See De Vlieger et al. (2022). - _N. J. A. Sloane_, Aug 29 2022
%o A354773 (Python)
%o A354773 from itertools import count, islice
%o A354773 from collections import deque
%o A354773 from functools import reduce
%o A354773 from operator import or_
%o A354773 def A354773_gen(): # generator of terms
%o A354773     aset, aqueue, b, f = {0,1,2}, deque([2]), 2, False
%o A354773     while True:
%o A354773         for k in count(1):
%o A354773             m, j, j2, r, s = 0, 0, 1, b, k
%o A354773             while r > 0:
%o A354773                 r, q = divmod(r,2)
%o A354773                 if not q:
%o A354773                     s, y = divmod(s,2)
%o A354773                     m += y*j2
%o A354773                 j += 1
%o A354773                 j2 *= 2
%o A354773             if s > 0:
%o A354773                 m += s*2**b.bit_length()
%o A354773             if m not in aset:
%o A354773                 if (s := bin(m)[:1:-1]).count('1') == 2:
%o A354773                     yield s.index('1')
%o A354773                 aset.add(m)
%o A354773                 aqueue.append(m)
%o A354773                 if f: aqueue.popleft()
%o A354773                 b = reduce(or_,aqueue)
%o A354773                 f = not f
%o A354773                 break
%o A354773 A354773_list = list(islice(A354773_gen(),20)) # _Chai Wah Wu_, Jun 26 2022
%o A354773 (C++) See Links section.
%Y A354773 Cf. A354169, A354680, A354767, A354798, A354774, A354775.
%K A354773 base,nonn
%O A354773 1,2
%A A354773 _N. J. A. Sloane_, Jun 26 2022