cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354774 For terms of A354169 that are the sum of two distinct powers of 2, the exponent of the larger power of 2.

This page as a plain text file.
%I A354774 #37 Nov 29 2023 13:08:13
%S A354774 1,3,4,5,6,7,9,10,4,11,13,14,6,15,17,18,19,20,21,22,5,23,25,26,27,28,
%T A354774 29,30,7,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,23,47,49,50,51,
%U A354774 52,53,54,55,56,57,58,59,60,61,62,31,63,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86
%N A354774 For terms of A354169 that are the sum of two distinct powers of 2, the exponent of the larger power of 2.
%C A354774 Taking first differences, then applying the RUNS transform gives [1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 13, 1, 1, 1, 13, 1, 1, 1, 29, 1, 1, 1, 29, 1, 1, 1, 61, 1, 1, 1, 61, 1, 1, 1, 125, 1, 1, 1, 125, 1, 1, 1, 253, 1, 1, 1, 253, 1, 1, 1, 509, ...].
%C A354774 If the initial 4 is changed to a 1, this has an obvious regular structure, which could then be analyzed to give a conjectured generating function, just as was done for A354767. See link below.
%C A354774 A more precise conjecture is given in the Formula section.
%H A354774 Rémy Sigrist, <a href="/A354774/b354774.txt">Table of n, a(n) for n = 1..10000</a>
%H A354774 Michael De Vlieger, Thomas Scheuerle, Rémy Sigrist, N. J. A. Sloane, and Walter Trump, <a href="http://arxiv.org/abs/2209.04108">The Binary Two-Up Sequence</a>, arXiv:2209.04108 [math.CO], Sep 11 2022.
%H A354774 Rémy Sigrist, <a href="/A354774/a354774.txt">C++ program</a>
%H A354774 N. J. A. Sloane, <a href="/A354767/a354767.txt">A conjectured generating function for A354169.</a>
%F A354774 Conjecture from _N. J. A. Sloane_, Jun 29 2022: (Start)
%F A354774 The following is a conjectured explicit formula for a(n). Basically a(n) = n+2, except that there are four types of n which have a different formula, and there are 6 exceptional values for small n.
%F A354774 Here is the formula, which agrees with the first 10000 terms.
%F A354774 (I) If n = 3*2^(k-1)-3, k >= 2 then a(n) = (n+1)/2, except a(3) = a(9) = 4 and a(21) = 5.
%F A354774 (II) If n = 2^(k+1)-3, k >= 1 then a(n) = (n+1)/2, except a(5) = a(13) = 6 and a(29) = 7.
%F A354774 (III) If n = 3*2^(k-1)-2, k >= 2 then a(n) = n+1.
%F A354774 (IV) If n = 2^(k+1)-2, k >= 1 then a(n) = n+1.
%F A354774 (V) Otherwise a(n) = n+2. (End)
%F A354774 The conjecture is now known to be true. See De Vlieger et al. (2022). - _N. J. A. Sloane_, Aug 29 2022
%o A354774 (C++) See Links section.
%o A354774 (Python)
%o A354774 from itertools import count, islice
%o A354774 from collections import deque
%o A354774 from functools import reduce
%o A354774 from operator import or_
%o A354774 def A354774_gen(): # generator of terms
%o A354774     aset, aqueue, b, f = {0,1,2}, deque([2]), 2, False
%o A354774     while True:
%o A354774         for k in count(1):
%o A354774             m, j, j2, r, s = 0, 0, 1, b, k
%o A354774             while r > 0:
%o A354774                 r, q = divmod(r,2)
%o A354774                 if not q:
%o A354774                     s, y = divmod(s,2)
%o A354774                     m += y*j2
%o A354774                 j += 1
%o A354774                 j2 *= 2
%o A354774             if s > 0:
%o A354774                 m += s*2**b.bit_length()
%o A354774             if m not in aset:
%o A354774                 if (s := bin(m)[3:]).count('1') == 1:
%o A354774                     yield len(s)
%o A354774                 aset.add(m)
%o A354774                 aqueue.append(m)
%o A354774                 if f: aqueue.popleft()
%o A354774                 b = reduce(or_,aqueue)
%o A354774                 f = not f
%o A354774                 break
%o A354774 A354774_list = list(islice(A354774_gen(),30)) # _Chai Wah Wu_, Jun 27 2022
%Y A354774 Cf. A354169, A354680, A354767, A354798, A354773, A354775.
%K A354774 nonn
%O A354774 1,2
%A A354774 _N. J. A. Sloane_, Jun 26 2022