cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354783 If the binary expansion of A354757(n) is 1 d_1 d_2 ... d_k, then the binary expansion of a(n) is c_1 c_2 ... c_k, where c_i = 1 - d_i.

This page as a plain text file.
%I A354783 #24 Aug 02 2022 14:23:07
%S A354783 0,0,1,1,3,0,4,4,12,0,3,3,19,2,34,0,64,64,76,8,136,0,256,256,768,0,17,
%T A354783 17,1041,16,50,32,2080,0,4096,4096,12288,0,68,68,16452,64,200,128,
%U A354783 32896,0,65536,65536,196608,0,768,768,262912,512,524800,0,1048576,1048576,1049601,1024,2098176,0,18,18,4194322,16,2096,2048,8390656,0,16777216
%N A354783 If the binary expansion of A354757(n) is 1 d_1 d_2 ... d_k, then the binary expansion of a(n) is c_1 c_2 ... c_k, where c_i = 1 - d_i.
%C A354783 Has the same relation to A354757 as A354781 does to A354780.
%C A354783 The offset is 1, to avoid having to define a(0).
%H A354783 N. J. A. Sloane, <a href="/A354783/b354783.txt">Table of n, a(n) for n = 1..4800</a>
%e A354783 A354757(5) = 12 = 1100_2, so a(5) = 11_2 = 3.
%e A354783 A354757(6) = 15 = 1111_2, so a(6) = 0.
%e A354783 A354757(7) = 27 = 11011_2, so a(7) = 100_2 = 4.
%Y A354783 Cf. A354169, A354757, A354780, A354781.
%Y A354783 See A354793 for Hamming weight of a(n).
%K A354783 nonn,base
%O A354783 1,5
%A A354783 _N. J. A. Sloane_, Jul 08 2022
%E A354783 Added comment and examples. - _N. J. A. Sloane_, Aug 02 2022