This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354790 #89 Aug 03 2024 11:14:08 %S A354790 1,2,3,5,7,11,6,13,17,19,23,29,31,35,22,37,39,41,43,47,53,59,61,67,71, %T A354790 73,79,83,85,89,14,97,101,103,33,107,109,113,127,131,137,139,149,151, %U A354790 157,163,167,173,179,181,191,193,197,199,211,223,227,229,65,233 %N A354790 a(n) is the least positive squarefree number not already used that is coprime to the previous floor(n/2) terms. %C A354790 A version of the Two-Up sequence A090252 that is restricted to squarefree numbers. %H A354790 Rémy Sigrist, <a href="/A354790/b354790.txt">Table of n, a(n) for n = 1..10000</a> %H A354790 Thomas Scheuerle, <a href="/A354790/a354790_7.txt">Comments on A354790</a> regarding the possibility of composites with more than two factors. %H A354790 Rémy Sigrist, <a href="/A354790/a354790_1.txt">Table of n, a(n) for n = 1..100000</a> %H A354790 Rémy Sigrist, <a href="/A354790/a354790_8.txt">PARI program with comments</a> %H A354790 Rémy Sigrist, <a href="/A354790/a354790.txt">C program</a> (inspired by Russ Cox's Go program for A247665) %H A354790 Michael De Vlieger, <a href="/A354790/a354790.png">Compact annotated plot of prime p | A354790(n) at (n, pi(p)) for composite A354790(n)</a>, n <= 1500. Color function indicates the number k > 1 of appearances of divisor p in the sequence. Diagram supports a proposition similar to Conjecture 3 in A090252 but regarding this sequence. Indices n connected in red appear in A355897. %H A354790 Michael De Vlieger, <a href="/A354790/a354790_1.png">Comprehensive annotated plot of prime p | A354790(n) at (n, pi(p)) for composite A354790(n)</a>, n <= 10^5. Color function indicates the number k > 1 of appearances of divisor p in the sequence. %p A354790 # A354790 = Squarefree version of the Two-Up sequence A090252 %p A354790 # This produces 2*M terms in the array a %p A354790 # Assumes b117 is a list of sufficiently many squarefree numbers A005117 %p A354790 # Test if u is relatively prime to all of a[i], i = i1..i2 %p A354790 perpq:=proc(u,i1,i2) local i; global a; %p A354790 for i from i1 to i2 do if igcd(u,a[i])>1 then return(-1); fi; od: 1; end; %p A354790 a:=Array(1..10000,-1); %p A354790 hit:=Array(1..10000,-1); # 1 if i has appeared %p A354790 a[1]:=1; a[2]:=2; hit[1]:=1; hit[2]:=1; %p A354790 M:=100; M1 := 1000; %p A354790 for p from 2 to M do %p A354790 # step 1 want a[2p-1] relatively prime to a[p] ... a[2p-2] %p A354790 sw1:=-1; %p A354790 for j from 1 to M1 do %p A354790 c:=b117[j]; %p A354790 if hit[c] = -1 and perpq(c,p,2*p-2) = 1 then a[2*p-1]:=c; hit[c]:=1; sw1:=1; break; fi; %p A354790 od: # od j %p A354790 if sw1 = -1 then error("no luck, step 1, p =",p ); fi; %p A354790 # step 2 want a[2p] relatively prime to a[p] ... a[2p-1] %p A354790 sw2:=-1; %p A354790 for j from 1 to M1 do %p A354790 c:=b117[j]; %p A354790 if hit[c] = -1 and perpq(c,p,2*p-1) = 1 then a[2*p]:=c; hit[c]:=1; sw2:=1; break; fi; %p A354790 od: # od j %p A354790 if sw2 = -1 then error("no luck, step 2, p =",p ); fi; %p A354790 od: # od p %p A354790 [seq(a[i],i=1..2*M)]; %t A354790 nn = 60; pp[_] = 1; k = r = 1; c[_] = False; a[1] = 1; Do[Set[m, SelectFirst[Union@ Append[Times @@ # & /@ Subsets[#, {2, Infinity}], Prime[r]] &[Prime@ Select[Range[If[k == 1, r, k + 1]], p[Prime[#]] < n &]], ! c[#] &]]; Set[a[n], m]; (c[m] = True; If[PrimeQ[m], r++]; If[n > 1, Map[(Set[p[#], 2 n]; pp[#]++) &, #]]) &@ FactorInteger[m][[All, 1]]; While[pp[Prime[k]] > 2, k++], {n, 2, nn}]; Array[a, nn] (* _Michael De Vlieger_, Sep 06 2022 *) %o A354790 (PARI) \\ See Links section. %o A354790 (Python) %o A354790 from math import lcm, gcd %o A354790 from itertools import count, islice %o A354790 from collections import deque %o A354790 from sympy import factorint %o A354790 def A354790_gen(): # generator of terms %o A354790 aset, aqueue, c, b, f = {1}, deque([1]), 2, 1, True %o A354790 yield 1 %o A354790 while True: %o A354790 for m in count(c): %o A354790 if m not in aset and gcd(m,b) == 1 and all(map(lambda n:n<=1,factorint(m).values())): %o A354790 yield m %o A354790 aset.add(m) %o A354790 aqueue.append(m) %o A354790 if f: aqueue.popleft() %o A354790 b = lcm(*aqueue) %o A354790 f = not f %o A354790 while c in aset: %o A354790 c += 1 %o A354790 break %o A354790 A354790_list = list(islice(A354790_gen(),30)) # _Chai Wah Wu_, Jul 17 2022 %o A354790 (C) // See Links section. %Y A354790 Cf. A090252, A247665, A354169. %Y A354790 See A354791 and A354792 for the nonprime terms. %Y A354790 See A355895 for the even terms. %K A354790 nonn %O A354790 1,2 %A A354790 _Michael De Vlieger_ and _N. J. A. Sloane_, Jul 17 2022 %E A354790 More terms from _Rémy Sigrist_, Jul 17 2022