This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A354793 #25 Jul 28 2022 12:10:26 %S A354793 0,0,1,1,2,0,1,1,2,0,2,2,3,1,2,0,1,1,3,1,2,0,1,1,2,0,2,2,3,1,3,1,2,0, %T A354793 1,1,2,0,2,2,3,1,3,1,2,0,1,1,2,0,2,2,3,1,2,0,1,1,3,1,2,0,2,2,3,1,3,1, %U A354793 2,0,1,1,2,0,2,2,3,1,2,0,1,1,3,1,2,0,2,2,3,1,3,1,2,0,1,1,2,0,2,2,3,1,2 %N A354793 Hamming weight of A354783(n). %C A354793 Conjecture: This sequence appears to have a simple structure. Encode it by making the following substitutions, in this order: %C A354793 Replace the initial 28 terms 0011201120223120113120112022 by S (as usual, the start is irregular), then map: %C A354793 3 1 3 -> 7 %C A354793 3 1 2 -> 6 %C A354793 1 2 0 1 1 2 0 2 2 -> 9 %C A354793 0 1 1 -> 2 %C A354793 0 2 2 -> 4 %C A354793 Then it appears that the encoded sequence is the concatenation of the following blocks: %C A354793 S %C A354793 79 %C A354793 79(6264)^1 %C A354793 79(6264)^1 %C A354793 79(6264)^3 %C A354793 79(6264)^3 %C A354793 79(6264)^15 %C A354793 79(6264)^15 %C A354793 79(6264)^31 %C A354793 79(6264)^31 %C A354793 79(6264)^63 %C A354793 79(6264)^63 %C A354793 79(6264)^127 %C A354793 79(6264)^127 %C A354793 ... %C A354793 This is probably not the most efficient encoding, but I was happy to find any one that revealed the structure. %C A354793 From _Michel Dekking_, Jul 23 2022: (Start) %C A354793 The following is another way to present the conjecture above, which shows the close connection with sequence A355150. %C A354793 Conjecture: It appears that this sequence is almost a periodic sequence, with period 12. Let x:=A354789. %C A354793 If n > 28, n == 5 (mod 12) is not an element of x then (written as words) %C A354793 a(n)a(n+1)...a(n+11) = 312011312022. %C A354793 If n > 28, n == 5 (mod 12) is an element of x then %C A354793 a(n)a(n+1)...a(n+11) = 313120112022. %C A354793 (End) %H A354793 N. J. A. Sloane, <a href="/A354793/b354793.txt">Table of n, a(n) for n = 1..4900</a> %Y A354793 Cf. A354169, A354757, A354783, A355150. %K A354793 nonn %O A354793 1,5 %A A354793 _N. J. A. Sloane_, Jul 19 2022