cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354795 Triangle read by rows. The matrix inverse of A354794. Equivalently, the Bell transform of cfact(n) = -(n - 1)! if n > 0 and otherwise 1/(-n)!.

This page as a plain text file.
%I A354795 #34 Jun 15 2022 01:14:14
%S A354795 1,0,1,0,-1,1,0,-1,-3,1,0,-2,-1,-6,1,0,-6,0,5,-10,1,0,-24,4,15,25,-15,
%T A354795 1,0,-120,28,49,35,70,-21,1,0,-720,188,196,49,0,154,-28,1,0,-5040,
%U A354795 1368,944,0,-231,-252,294,-36,1,0,-40320,11016,5340,-820,-1365,-987,-1050,510,-45,1
%N A354795 Triangle read by rows. The matrix inverse of A354794. Equivalently, the Bell transform of cfact(n) = -(n - 1)! if n > 0 and otherwise 1/(-n)!.
%C A354795 The triangle is the matrix inverse of the Bell transform of n^n (A354794).
%C A354795 The numbers (-1)^(n-k)*T(n, k) are known as the Lehmer-Comtet numbers of 1st kind (A008296).
%C A354795 The function cfact is the 'complementary factorial' (name is ad hoc) and written \hat{!} in TeX mathmode. 1/(cfact(-n) * cfact(n)) = signum(-n) * n for n != 0. It is related to the Roman factorial (A159333). The Bell transform of the factorial are the Stirling cycle numbers (A132393).
%D A354795 Louis Comtet, Advanced Combinatorics. Reidel, Dordrecht, 1974, p. 139-140.
%H A354795 D. H. Lehmer, <a href="http://dx.doi.org/10.1216/RMJ-1985-15-2-461">Numbers Associated with Stirling Numbers and x^x</a>, Rocky Mountain J. Math., 15(2) 1985, pp. 461-475.
%H A354795 Peter Luschny, <a href="https://oeis.org/wiki/User:Peter_Luschny/BellTransform">The Bell transform</a>
%F A354795 T(n, k) = n!*[t^k][x^n] (1 - x)^(t*(x - 1)).
%F A354795 T(n, k) = Sum_{j=k..n} (-1)^(n-k)*binomial(j, k)*k^(j-k)*Stirling1(n, j).
%F A354795 T(n, k) = Bell_{n, k}(a), where Bell_{n, k} is the partial Bell polynomial evaluated over the sequence a = {cfact(m) | m >= 0}, (see Mathematica).
%F A354795 T(n, k) = (-1)^(n-k)*t(n, k) where t(n, n) = 1 and t(n, k) = (n-1)*t(n-2, k-1) - (n-1-k)*t(n-1, k) + t(n-1, k-1) for k > 0 and n > 0.
%F A354795 Let s(n) = (-1)^n*Sum_{k=1..n} (k-1)^(k-1)*T(n, k) for n >= 0, then s = A159075.
%F A354795 Sum_{k=1..n} (k + x)^(k-1)*T(n, k) = binomial(n + x - 1, n-1)*(n-1)! for n >= 1. Note that for x = k this is A354796(n, k) for 0 <= k <= n and implies in particular for x = n >= 1 the identity Sum_{k=1..n} (k + n)^(k - 1)*T(n, k) = Gamma(2*n)/n! = A006963(n+1).
%F A354795 E.g.f. of column k >= 0: ((1 - t) * log(1 - t))^k / ((-1)^k * k!). - _Werner Schulte_, Jun 14 2022
%e A354795 Triangle T(n, k) begins:
%e A354795 [0] [1]
%e A354795 [1] [0,     1]
%e A354795 [2] [0,    -1,    1]
%e A354795 [3] [0,    -1,   -3,   1]
%e A354795 [4] [0,    -2,   -1,  -6,   1]
%e A354795 [5] [0,    -6,    0,   5, -10,    1]
%e A354795 [6] [0,   -24,    4,  15,  25,  -15,    1]
%e A354795 [7] [0,  -120,   28,  49,  35,   70,  -21,   1]
%e A354795 [8] [0,  -720,  188, 196,  49,    0,  154, -28,   1]
%e A354795 [9] [0, -5040, 1368, 944,   0, -231, -252, 294, -36, 1]
%p A354795 # The function BellMatrix is defined in A264428.
%p A354795 cfact := n -> ifelse(n = 0, 1, -(n - 1)!): BellMatrix(cfact, 10);
%p A354795 # Alternative:
%p A354795 t := proc(n, k) option remember; if k < 0 or n < 0 then 0 elif k = n then 1 else (n-1)*t(n-2, k-1) - (n-1-k)*t(n-1, k) + t(n-1, k-1) fi end:
%p A354795 T := (n, k) -> (-1)^(n-k)*t(n, k):
%p A354795 seq(print(seq(T(n, k), k = 0..n)), n = 0..9);
%p A354795 # Using the e.g.f.:
%p A354795 egf := (1 - x)^(t*(x - 1)):
%p A354795 ser := series(egf, x, 11): coeffx := n -> coeff(ser, x, n):
%p A354795 row := n -> seq(n!*coeff(coeffx(n), t, k), k=0..n):
%p A354795 seq(print(row(n)), n = 0..9);
%t A354795 cfact[n_] := If[n == 0, 1, -(n - 1)!];
%t A354795 R := Range[0, 10]; cf := Table[cfact[n], {n, R}];
%t A354795 Table[BellY[n, k, cf], {n, R}, {k, 0, n}] // Flatten
%Y A354795 Cf. A354794 (matrix inverse), A176118 (row sums), A005727 (alternating row sums), A045406 (column 2), A347276 (column 3), A345651 (column 4), A298511 (central), A008296 (variant), A159333, A264428, A159075, A006963, A354796.
%K A354795 sign,tabl
%O A354795 0,9
%A A354795 _Peter Luschny_, Jun 09 2022