A354797 Triangle read by rows. T(n, k) = |Stirling1(n, k)| * Stirling2(n + k, n) = A132393(n, k) * A048993(n + k, n).
1, 0, 1, 0, 3, 7, 0, 12, 75, 90, 0, 60, 715, 2100, 1701, 0, 360, 7000, 36750, 69510, 42525, 0, 2520, 72884, 595350, 1940295, 2692305, 1323652, 0, 20160, 814968, 9549120, 47030445, 109794300, 120023904, 49329280, 0, 181440, 9801000, 156008160, 1076453763, 3723239520, 6733767040, 6065579520, 2141764053
Offset: 0
Examples
Table T(n, k) begins: [0] 1 [1] 0, 1 [2] 0, 3, 7 [3] 0, 12, 75, 90 [4] 0, 60, 715, 2100, 1701 [5] 0, 360, 7000, 36750, 69510, 42525 [6] 0, 2520, 72884, 595350, 1940295, 2692305, 1323652 [7] 0, 20160, 814968, 9549120, 47030445, 109794300, 120023904, 49329280
Links
- Mike Earnest, Counting endofunctions by inclusion-exclusion, at Math.StackExchange.
Programs
-
Maple
T := (n, k) -> abs(Stirling1(n, k))*Stirling2(n + k, n): for n from 0 to 6 do seq(T(n, k), k = 0..n) od;
Formula
Sum_{k=0..n} (-1)^(n - k)*T(n, k) = n^n. - Werner Schulte, Jun 03 2022 in A000312. [Formerly a conjecture, now proved by Mike Earnest, see link.]